
1. Introduction

Biofilms are immobile communities of microbes attached to 
biotic an abiotic surfaces and are embedded inside a self-
produced cement-like extracellular polymeric substances 
(EPS). Biofilm is the most prevalent and successful microbial 
lifestyle in natural as well as manmade environments 
(Flemming et al. 2016; Plusa 2019). Though term biofilm came 
into existence recently, it represents the oldest form of life on 
Earth (Bowler 2018) and predominates all the habitats on the 
surface of earth, forming approximately 80% of the bacterial 
population on earth (Flemming and Wuertz 2019). The EPS 
provides a hydrated conducive environment for microbial 
growth which helps them attach together as a colony on any 
available surface. Biofilms protect the bacteria from the hostile 
environmental conditions like antibiotic exposure, osmotic 
stress, metal toxicity, extreme temperature and pH, poor 
nutrients, etc. Globally, bacterial biofilms pose serious 

challenges to human and animal health because of their 
resistance against antibiotics, host immune system, and other 
environmental stresses. Therefore, biofilms cause chronic 
infections (de la Fuente-Nunez et al. 2013) which increase the 
treatment cost and induce mental-illness in patients (Hoiby et 
al. 2011). Bacterial biofilms potentially grow on all surfaces 
including the living tissues, surgical equipments, as well as the 
implants and the internal devices such as contraceptive 
devices, catheters, sutures, pacemakers, dental implants, 
contact lenses, etc (Reg Bott 2011; Dincer et al. 2020; Jamal et 
al. 2018). Owing to the difficulty in eradication of biofilms 
because of their significant protection against desiccation, 
antibiotics, and host immune system, their widespread growth 
has produced severe clinical complications in medical and 
veterinary settings (Abebe 2020). 

The resistance of biofilms against commonly used drugs 
has been implicated in the pathogenesis of various bacterial 
infections under medical and veterinary settings which 
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Abstract 

Biofilms are immobile communities of microbes attached to biotic an abiotic surfaces and are 
embedded inside a self-produced cement-like extracellular polymeric substances. The resistance 
of biofilms against commonly used drugs has been implicated in the pathogenesis of various 
bacterial infections under medical and veterinary settings which normally cannot be eradicated 
by antibiotics. Biofilms are characterized by the ability to evade not only the antibiotic effects 
but also the host immune system clearance. Currently the most worrisome aspect of global 
human health is the rise and spread of antimicrobial resistance in bacterial pathogens and this 
crisis got deepened by the emergence of antimicrobial resistance of bacterial biofilms. Different 
antibiotic resistance mechanisms, processes by which a target pathogen curtails the interaction 
between an antimicrobial agent and its intended target molecules, adopted by biofilms have been 
discussed in this review. Different antibiotic resistance mechanisms are employed by the 
biofilms depending on the species of the bacteria, growth conditions, and the antibiotic 
involved. Commonly, the role of biofilm matrix polysaccharides, antibiotic-modifying or 
degrading enzymes, extracellular DNA, hypoxic conditions, presence of efflux pumps, quorum 
sensing, horizontal gene transfer, mutation frequency, etc. have been implicated in antibiotic 
resistance of biofilms. This review also discusses different approaches of overcoming biofilm 
infections or biofilm resistance. However, it is pertinent to mention that since no new class of 
antibiotics have been approved in last four decades there is the need of greater understanding of 
biofilm-associated antibiotic resistance to effectively utilise the therapeutic value of the existing 
antibiotics. Although a number of anti-biofilm strategies have been put forward as discussed in 
this review, they are still in nascent stage and need to undergo clinical trials to reach the 
commercial market. 
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normally cannot be eradicated by antibiotics. This has resulted 
in recalcitrance of subacute and chronic bacterial infections 
such as chronic lung infections in cystic fibrosis patients by 
Pseudomonas aeruginosa (Singh et al. 2000; Hall and Mah 
2017) and infections associated with medical devices such as 
pacemakers (Dincer et al. 2020). It has been shown that 
bacteria in biofilms are 10-1000 times more resistant to 
antibiotics compared to their planktonic forms and about 80% 
of recurrent and chronic infections in humans were associated 
with bacterial biofilms (Mah 2012). Although the primary 
causes of antibiotic resistance were identified as changes in 
drug targets, antibiotic impermeability in bacteria, genetic 
changes, etc. which resulted in treatment failures, the 
development of bacterial films has been implicated in 
antibiotic resistance recently and is now considered as a 
primary cause of chronic infections and antibiotic resistance 
(Bowler 2018). In biofilms the growth of bacterial cells is very 
slow and results in production of persistent cells which have 
the ability to withstand unfavourable environmental conditions 
such as exposure to antimicrobials (Flemming et al. 2016; Hall 
and Mah 2017). Several studies have reported that exposure of 
bacteria to lower levels of antibiotics can potentially induce 
formation of biofilm which indicates the regulation of biofilm 
formation by presence of antibiotics (Cepas et al. 2019). The 
increasing trend of antibiotic resistance in past few decades has 
been attributed to the incongruous, excessive, and over-the-
counter use of antibiotics in medical and veterinary settings 
paralleled by poor sanitation and hygiene, and the influx of 
drug residues into human body through consumption of animal 
products (Aslam et al. 2018; Begum et al. 2018) along with the 
increased global travel (Hawkey 2015). 

2. Biofilm development 
Biofilm is a sessile community of microbes which irreversibly 
attach themselves to a surface or any interface. The cells 
produce extracellular polymeric substances (EPSs), remain 
embedded in it, and display altered gene expression, protein 
synthesis, growth rate, and phenotypic characters (Flemming et 
al. 2016; Oxaran et al. 2018). The microbes undergo a 
phenotypic shift from a planktonic free-swimming lifestyle to a 
sessile mode as a biofilm which is a highly regulated process 
influenced by environmental as well as genetic factors 
(Southey-Pillig et al. 2005; Otto 2008; Monds and O’Toole 
2009; Lopez et al. 2010). The biofilm formation is a multi-step 
process involving physiological and structural changes in the 
microbial population. The general steps are: a) initial 
attachment of a planktonic cell to a favourable surface, b) 
colony formation by cellular multiplication and differentiation, 
c) development of biofilm and EPS secretion, d) maturation 
and formation of mushroom like shape, and e) disassembly of 
the matrix and dispersion of microbes (Dufour et al. 2012; 
Mangwani et al. 2016; Maunders and Welch 2017; Jamal et al. 
2018). The EPS is a hydrated matrix of proteins, cellulose, 
alginates, teichoic acid, poly-N-acetyl, and other organic 

compounds (Jolivet-Gougeon and Bonnaure-Mallet 2014; 
Flemming et al. 2016) in which the microbial cells remain 
embedded. It plays a crucial physiological role for cells in the 
synthesis of compounds like glucosamine, lipids, nucleic acids, 
phospholipids, extracellular DNA (eDNA), and fosters physical 
interaction among the cells (Flemming et al. 2016). After 
maturation of the biofilm colony the cells can disassociate and 
adopt the free planktonic lifestyle again and may again start the 
biofilm formation on a new surface (Petrova and Sauer 2016). 
The cells in the biofilm, lying in close proximity of each other, 
communicate via chemical messengers to respond as a unit to 
ecological, environmental, and host related signals (Matz 
2011). The communication between the cells, known as 
quorum sensing, is mediated by several signalling molecules 
such as acyl homoserine lactone (AHL) and autoinducing 
peptide (AIP) in Gram-negative and Gram-positive bacteria, 
respectively; and the autoinducer-2 (AI-2) in both types of 
bacteria in a cooperative manner for a common goal 
(Brackman and Coenve 2014; Petrova and Sauer 2012). The 
biofilm development in microbes is induced by different 
environmental signals, such as exposure of P. aeruginosa and 
Escherichia coli to aminoglycoside antibiotics at sub-inhibitory 
levels induce biofilm formation (Hoffman et al. 2005). Its 
course of formation is determined by the interplay of many 
factors such as surface conditions, osmolarity of medium, 
availability of growth factors, environmental stressors, etc. 
(Kostakioti et al. 2013). 

3. Biofilm and antibiotic resistance 
Currently the most worrisome aspect of global human health is 
the rise and spread of antimicrobial resistance in bacterial 
pathogens and this crisis got deepened by the emergence of 
antimicrobial resistance in bacterial biofilms (Balcazr et al. 
2015; Zhang et al. 2018; Cepas et al. 2019). The striking 
phenotypic difference between biofilms and their 
corresponding planktonic forms is that cells in biofilms are 
relatively highly resistant to antimicrobial agents (Hall and 
Mah 2017). The microbes in the biofilm have been reported 
tolerate 10-1000 times the antimicrobial concentration 
compared to the corresponding planktonic form (Myszka and 
Czaczy 2011; Pinto et al. 2020). The biofilms provide 
protection to pathogens not only against unfavourable pH, 
osmolarity, nutrient availability, and physical forces (Fux et al. 
2005; McCarty et al. 2012) but also against the antibiotics and 
host immune system (Sharma et al. 2019). It is the biofilm 
formation and consequent entrenching of microbes in the 
complex matrix that confers resistance against the 
antimicrobials and other sterilising agents making the 
eradication and control of microbes difficult (Satpathy et al. 
2016; Khatoon et al. 2018; Lajhar et al. 2018). Thus, biofilms 
are important instruments leading to chronic infections and 
fostering the spread of antibiotic resistance resulting in the 
emergence of multi-drug resistant bad bugs. 

The antibiotic resistance displayed by microbes in 
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biofilms is distinct from the natural antibiotic resistance 
exhibited by planktonic forms (Mauders and Welch 2017). The 
biofilms tend to develop different molecular strategies to avert 
the hostile conditions imposed by the antibiotics in the 
medium. The determinants of antibiotic resistance pertaining to 
biofilms are: a) type of antimicrobial agent, b) bacterial 
species/strain, c) developmental stage and age of biofilm, d) 
growth conditions of biofilm, e) nature of biofilm structure, etc 
(Ito et al. 2009; Alhede et al. 2011; Bowler et al. 2012; Haaber 
et al. 2012; Stewart 2015). A number of mechanisms have been 
put forward to substantiate the antibiotic resistance of biofilms, 
however, none of the mechanisms could individually account 
for this feature of biofilms. The commonly proposed 
mechanisms include: a) restriction of antibiotic diffusion in 
polymeric matrix, b) lowering of antibiotic activity by 
interaction with polymeric matrix, c) enzyme-mediated 
inactivation of antibiotics such as β-lactamase (Hoiby et al. 
2010), d) altered metabolic activity inside biofilm, e) 
alterations in target genes or hiding of target genes, f) efflux 
pump mediated extrusion of antibiotics (Hoiby et al. 2010), g) 
production of persistent cells, h) easy transfer of resistance 
genes within the biofilm (Costerton et al. 2005; Balcazar et al. 
2015; Lecuyer et al. 2018), etc. The genetic diversification of 
microbes in the biofilms has been largely held responsible for 
antibiotic resistance (Plusa 2019) because the resistant gene 
determinants undergo rapid horizontal transfer in the densely 
packed microbial biofilm (Costerton et al. 2005; Balcazar et al. 
2015; Lecuyer et al. 2018).  

4. Resistance mechanisms 
The resistance mechanism is a process by which a target 
pathogen curtails the interaction between an antimicrobial 
agent and its intended target molecules (Lewis 2008). It can be 
either because of mutations or by exchange of resistant genetic 
elements (Cox and Wright 2013; Blair et al. 2015) or it may be 
an intrinsic property of the microbes to resist the effect of 
antimicrobial agents; such as the relatively greater 
impermeability of Gram-negative bacteria to antibacterial 
agents compared to Gram-positive bacteria. Such resistance 
mechanisms strongly circumvent the efficacy of antimicrobials 
to treat the infections, particularly the biofilm linked infections. 
Therefore, the development of an appropriate treatment 
strategy against the biofilm based infections warrants the better 
understanding of mechanisms underlying the biofilm based 
antibiotic resistance. The details of the commonly proposed 
mechanisms of biofilm based antibiotic resistance are as 
follows: 

4.1 Biofilm matrix polysaccharides and antibiotic resistance 

The component cells of the biofilm are entrenched in EPS 
which prevents the spread of antimicrobial agent in to the inner 
layers of the film. Since EPS is composed of charged 
molecules such as proteins, glycoproteins, and glycolipids, it 
forms a physical barrier to antimicrobial agents by binding the 

oppositely charged antimicrobials and render them ineffective 
(Nadell et al. 2015). On the other hand, it has also been 
proposed that EPS matrix of biofilm hampers the dispersal of 
antibiotic agent which provides enough time for the biofilm 
cells to adapt the environment with gradually increasing 
antibiotic concentration (Tseng et al. 2013). Biofilm matrix 
induced antibiotic resistance has been observed in P. 
aeruginosa biofilms where Pel exopolysaccharide hindered the 
action of aminoglycosides by spreading the cationic antibiotics. 
Lacking of Pel exopolysaccharide gene locus, vital for 
structural integrity of biofilms, in wild-type biofilms has made 
them more susceptible to aminoglycosides (Colvin et al. 2011). 
Another exopolysaccharide, Psl, has been declared 
indispensable for biofilm formation in most of the P. 
aeruginosa strains and confers resistance at early stages of 
biofilm development against colistin, polymyxin B, 
tobramycin, and ciprofloxacin (Billings et al. 2013). Similarly, 
the reduced penetration of oxacillin, cefotaxime, and 
vancomycin was also reported in Staphylococcus aureus and S. 
epidermidis biofilms which resulted in low susceptibility of 
these biofilms to the above three antibiotics (Jefferson et al. 
2005; Singh et al. 2010, 2016). 

However, this limitation to the diffusion of antibiotics 
seems to be dependent on the experimental conditions, 
bacterial strain involved, and the growth conditions of the 
biofilm. It is pertinent to mention that decreased antibiotic 
penetration as a results of biofilm EPS is occasionally linked to 
biofilm antibiotic resistance. Even the antibiotics which swiftly 
diffuse within the biofilm do not result in a significant death of 
cells. For example, no effect on cell viability was observed 
even after complete dispersal of tetracycline in the biofilm of 
uropathogenic E. coli within 10 minutes (Stone et al. 2002). 
The role of Pel in antibiotic resistance of biofilms was marred 
by controversy when it was demonstrated that PelA P. 
aeruginosa biofilms deficient in Pel have shown four time 
more resistance compared to wild type biofilms against the 
aminoglycosides (Khan et al. 2010). Similarly, the 
overexpression of Psl in certain P. aeruginosa strains did not 
increase their resistance against tobramycin (Colvin et al. 
2011). Furthermore, even at concentrations much higher than 
MIC values for planktonic forms, ampicillin and ciprofloxacin 
could not affect the cells within the Klebsiella pneumoniae 
biofilm (Hall and Mah 2017). Similar observations have been 
reported with staphylococcal biofilms against the antimicrobial 
agents such as rifampin, daptomycin, amikacin, and 
ciprofloxacin (Stewart et al. 2009; Singh et al. 2010, 2016; 
Boudjemaa et al. 2016). 

4.2 Antibiotic-modifying enzymes and biofilm resistance 

Another aspect of biofilm matrix associated antibiotic 
resistance is the production of antibiotic modifying/degrading 
enzymes, such as β-lactamases which degrade the antibiotics 
and render them ineffective or unreachable to their intended 
targets. Under the influence of imipenem and ceftazidime the 
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matrix of P. aeruginosa biofilm secrete and accumulate high 
amount of β-lactamases which hydrolyse these antibiotics in 
defence of the biofilm (Bagge et al. 2004). Furthermore, as a 
result of greater accumulation of β-lactamases in mature P. 
aeruginosa biofilms they were reported to be more resistant to 
ceftazidime and meropenem compared to younger biofilms 
(Bowler et al. 2012). Similarly, the biofilms of K. pneumoniae 
were reported to secrete β-lactamase which hydrolysed 
ampicillin and prevented it from reaching the target cells 
deeper within the biofilm (Hall and Mah 2017; Dincer et al. 
2020). However, even after the deletion of β-lactamase, K. 
pneumoniae biofilms were still resistant to ampicillin 
compared to their planktonic forms, which indicates the 
presence of additional mechanisms of resistance (Hall and Mah 
2017; Dincer et al. 2020). 

4.3 Extracellular DNA and role in antibiotic resistance 

Again, extracellular DNA (eDNA) is another aspect of 
bacterial biofilm matrix induced antibiotic resistance. The role 
of eDNA in antimicrobial resistance is an extensively studied 
molecular mechanism in P. aeruginosa. The release of eDNA 
in the biofilm may be endogenously mediated by quorum-
sensing and fratricidal lysis of cells within the biofilm; and 
exogenously by polymorphonuclear WBCs at the site of 
infection (Allesen-Holm et al. 2006; Jakubovics et al. 2013; 
Hall and Mah 2017). Irrespective of the source, the eDNA has 
been indicated in biofilm resistance to certain antimicrobials 
(Chiang et al. 2013). The exogenous eDNA gets incorporated 
into the biofilm matrix of P. aeruginosa and confers resistance 
to tobramycin and gentamicin (Chiang et al. 2013). The release 
of eDNA is fostered by exposure of the cells within the biofilm 
to the sub-therapeutic levels of the antibiotics. For example, 
the release of eDNA occurs in the biofilm of the S. aureus in 
response to low levels of methicillin, however, the mechanism 
behind this eDNA release is yet to be understood clearly 
(Kaplan 2011). On the similar lines, in S. epidermidis biofilm 
the exposure to sub-therapeutic levels of vancomycin resulted 
in two times increase of eDNA which strongly binds 
vancomycin and prevents its access to the cells of the biofilm 
(Doroshenko et al. 2014). 

One of the mechanisms of antimicrobial resistance by 
eDNA is alteration of the mineral concentration in the 
extracellular environment within the biofilm. The anionic 
nature of eDNA causes the chelation of magnesium ions which 
reduces their effective concentration in the biofilm 
environment of P. aeruginosa and Salmonella enterica and in 
turn this low magnesium ion concentration signals the PhoPQ 
and PmrAB two-component system activation to elicit the 
antimicrobial resistance (McPhee et al. 2006; Mulcahy et al. 
2008; Johnson et al. 2013; Wilton et al. 2016). Also, P. 
aeruginosa was shown to have acidic microdomains because of 
the accumulation of eDNA and this acidic environment also 
acts an environmental signal for the PhoPQ and PmrAB two-

component system activation (Wilton et al. 2016). 
Furthermore, spermidine, a polyamine gene product of PmrA-
regulated PA4773-4775 locus, is induced by eDNA which gets 
localised in the outer membrane of P. aeruginosa and reduces 
the membrane permeability to cationic antimicrobials, such as 
aminoglycosides (Johnson et al. 2012). Because of higher 
eDNA content in biofilm of Clostridium jejuni the resistant 
colonies against chloramphenicol and kanamycin were 
recovered 6.5 times more than the colonies of the planktonic 
forms (Bae et al. 2014). Similarly, natural transformation of 
antibiotic resistance genes was fostered in biofilms of 
Streptococcus pneumoniae with eDNA produced by fratricide 
compared to their planktonic counterparts (Wei and Havarstein 
2012; Marks et al. 2012). In addition to the above discussed 
physical defense against antibiotics, the eDNA also plays a 
significant role in the horizontal transfer of resistance genes 
between the member cells of a biofilm (Hall and Mah 2017).  

4.4 Hypoxia and antibiotic resistance 

The biofilms are characterized by component cells with 
different metabolic activities as a result of oxygen and nutrient 
gradient across the biofilm depth. The cells near the surface 
consume oxygen and nutrients to the maximum level before 
reaching the deeper layers of the biofilm (Stewart and Franklin 
2008). This nutrient and oxygen gradient results in bacterial 
cells within the biofilm with different growth rates (Blanco et 
al. 2016). Various researchers have reported the presence of 
steep oxygen gradient in biofilms of different bacterial species 
having oxygen deprived deeper layers and this hypoxic 
condition in deeper layers results in reduced growth rate with 
stationary phase-like condition in such cells (Borriello et al. 
2004; Werner et al. 2004; Stewart et al. 2016). As a result, 
these cells undergo reversible transformation into persistent or 
dormant cells, which are typically retrieved from chronic 
urinary tract infections and cystic fibrosis-affected lungs (Hall 
and Mah 2017). Growth rate of the microbes is one of the 
major determinants of antibiotic efficacy because the target 
macromolecules of the antibiotics are synthesised in 
metabolically active cells and hence the slow growing cells in 
deeper layers of the biofilm exhibit antibiotic resistance. 
Furthermore, there is a report of hypoxic conditions in P. 
aeruginosa biofilm which confer resistance against 
aminoglycosides by reducing the outer membrane potential 
which reduces their transport into the cell (Stewart 2015). The 
hypoxic conditions in P. aeruginosa biofilm upregulated the 
expression mexEF-oprN efflux pump which shows resistance 
to multiple antibiotics (Schaible et al. 2012). However, 
contrary to the above discussion the determinants of antibiotic 
resistance are transferred efficiently at oxygen rich air-liquid 
interface in E. coli (Krol et al. 2011) which indicates that cell 
in different environmental conditions exhibit different 
mechanisms of antibiotic resistance.  

4.5 Efflux pumps and antibiotic resistance 
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Antimicrobial efflux pumps, the membrane proteins coded by 
either bacterial chromosome or mobile genetic elements, are 
present in all bacterial species which export the antimicrobial 
agents out of the cell and confer resistance. These efflux 
pumps, having evolutionary significance, make the pathogens 
exhibit antibiotic resistance naturally and their overexpression 
also confers acquired resistance. Certain multidrug efflux 
pumps do contribute to formation of biofilms as well. There is 
a report on mutant E. coli that lack of genes associated with 
various efflux pumps results in severely reduced biofilm 
formation (Matsumura et al. 2011). Efflux pumps facilitate the 
formation of biofilm by regulation of genes associated with 
formation of biofilms indirectly and influence the aggregation 
of cells in biofilms as well (Alav et al. 2018). The biofilm 
resistance locus regulator (BrlR) in P. aeruginosa was declared 
vital for antibiotic resistance as it resulted in upregulation of 
mexAB-oprM and mexEF-oprN efflux pumps in the biofilm 
(Liao et al. 2013) and role of MexAB-OprM was also indicated 
in biofilm resistance to low concentration of ofloxacin (Brooun 
et al. 2000). On similar lines, the presence of azithromycin 
caused upregulation of efflux pumps - MexAB-OprM and 
MexCD-OprJ in resistant P. aeruginosa biofilms (Gillis et al. 
2012). In P. aeruginosa the biofilm-specific multidrug efflux 
pump – PA1874-1877 is a four-gene operon which is expressed 
10 times more in biofilms with respect to the planktonic cells 
(Zhang and Mah 2008). However, it is pertinent to mention 
that deletion of PA1874-1877 operon has no effect on the 
formation of biofilm, even though PA-1874 has sequence 
homology with Bap protein which is necessary for biofilm 
formation in S. aureus (Zhang and Mah 2008). However, the 
authors reported that there was 2-4 fold increase in 
susceptibility of the biofilm to tobramycin, gentamicin, and 
ciprofloxacin whereas, the susceptibility of planktonic forms 
remained unaltered (Zhang and Mah 2008). 

In other species such as Burkholderia cepacia the 
resistance nodulation-division family  efflux pumps (RND-8 
and RND-9) confer resistance to biofilms against tobramycin, 
whereas, RND-3 pump conferred resistance to both 
ciprofloxacin and tobramycin (Buroni et al. 2014). Similarly, in 
Helicobacter pylori biofilm the expression of RND efflux 
pumps was higher compared to its planktonic form which 
could be the reason for resistance to clarithromycin (Yonezawa 
et al. 2013). The treatment of B. pseudomallei biofilm with an 
efflux pump inhibitor resulted in decreased resistance to 
ceftazidime and doxycycline (Sirijant et al. 2016). However, it 
is noteworthy to mention that the multidrug efflux pumps, such 
as MexAB-OprM, primarily confer antibiotic resistance to 
planktonic cells (Poole 2011). A number of researchers have 
reported that multidrug efflux pumps have no role in antibiotic 
resistance in biofilms (de Kievit et al. 2001; Stewart 2015). 
And, such contrasting results can be ascribed to the presence of 
different experimental setups. 

4.6 Quorum Sensing and antibiotic resistance 

Though biofilms are considered self-sufficient, the microbial 
cells within interact with each other through certain chemicals 
to achieve the collective goals. The biofilm acts as a collective 
enterprise which responds to external stimuli in a highly 
coordinated way to achieve the common goals of the unit 
(Matz 2011; Oliveira et al. 2015). This cell to cell interaction 
or communication at a cellular level within the biofilm 
community is called quorum sensing. It is a process in which 
the constituent microbial cells produce and perceive the 
chemical signal molecules to coordinate their activity towards 
a common goal (Brackman and Coenye 2014). This quorum 
sensing is mediated by different chemical signalling molecules 
such as AIP in Gram-positive bacteria, AHL in Gram-negative 
bacteria, and AI-2 in both types of bacteria (Petrova and Sauer 
2012; Bhardwaj et al. 2013; Brackman and Coenye 2014). A 
fascinating hypothesis involving an interplay of quorum 
sensing molecule and eDNA has been put forward in P. 
aeruginosa biofilms which helps explain the contribution of 
quorum sensing to antibiotic resistance (Hazan et al. 2016). 
The authors state that 2-n-heptyl-4-hydroxyquinolone-N- oxide 
(HQNO), a quorum sensing-regulated molecule, inhibits 
cytochrome bc1 complex of electron transport chain which 
causes accumulation of ROS and in turn the fratricidal release 
of eDNA. This eDNA, as discussed in previous section, 
contributes to or promotes antibiotic resistance. 

A number of studies have reported on the quorum sensing 
and biofilm associated antibiotic resistance. The biofilms 
formed by certain strains of P. aeruginosa, deficient in quorum 
sensing phenomenon, were highly susceptible to tobramycin 
compared to their wild counterparts (Bjarnsholt et al. 2005). 
The P. aeruginosa biofilm becomes more susceptible to 
tobramycin when the population of quorum-sensing mutants 
increase compared to wild-type (Popat et al. 2012) and colistin 
resistance in P. aeruginosa was reported to be driven by 
quorum sensing (Chua et al. 2016). However, an intriguing 
converse of the above observation made by Popat et al. (2012) 
was reported earlier that quorum-sensing mutants in the 
biofilm of P. aeruginosa increased the resistance of biofilm to 
tobramycin (Amini et al. 2011). The authors furnished an 
explanation to validate their observation in which they called 
such quorum-sensing mutants as ‘social cheaters’ who take the 
advantage of quorum sensing staged by other members of the 
biofilm without actually participating in this energy consuming 
process. On the similar lines, quorum sensing deficient S. 
aureus biofilms were 2-3 times more susceptible to rifampin 
compared to their wild-type counterparts (Yarwood et al. 
2004). The quorum sensing system (fsr) and quorum-regulated 
protease (geIE) were reported to be fundamental in biofilm 
antibiotic resistance against gentamicin, daptomycin, and 
linezolid, but neither of them were required in planktonic 
forms (Dale et al. 2015). 

4.7 Horizontal gene transfer and antibiotic resistance 

The biofilms are characterized by close proximity of cells, high 
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density of cells, and accumulation of genetic elements in the 
biofilm matrix. This close proximity of cells provides an ideal 
environment for horizontal transfer of antibiotic resistance 
encoding plasmids. The horizontal transfer of resistance genes 
between the cells is called as conjugation and can potentially 
increase the resistance against antibiotics by 700 fold 
compared to planktonic cells (Flemming et al. 2016). 
Furthermore, in addition to the exchange of resistance elements 
between the cells via conjugation, bacteria may also internalise 
the eDNA present in the biofilm matrix. The eDNA is also 
linked to horizontal transfer of resistance elements to the cells 
and confers them antibiotic resistance (Hall and Mah 2017). 
However, conjugation is considered as most efficient means of 
horizontal transfer of resistance genes in biofilms compared to 
planktonic forms because of close proximity and sessile nature 
of cells within the biofilm (Madsen et al. 2012; Krol et al. 
2013; Savage et al. 2013; van Meervenne et al. 2014). The S. 
aureus biofilm is considered as an unprecedented site for 
conjugal transfer of multidrug resistance conferring plasmids 
with an efficiency of 10,000 times as that of its planktonic 
forms (Savage et al. 2013). The biofilms of Enterococcus 
faecalis revealed a 2 fold increase in plasmid copy number 
associated with antibiotic resistance genes which suggests the 
furtherance of resistance genes in the biofilms (Cook and 
Dunny 2013). Similarly, the conjugal transfer of plasmids 
carrying antibiotic resistance determinants in E. coli occurred 
efficiently at air-liquid interface (Krol et al. 2011) which is an 
interesting contrast to the importance of hypoxia in promoting 
biofilm resistance as discussed above. 

4.8 Mutation frequency and antibiotic resistance 

Not enough conclusive literature is available which 
substantiates the mutation as a mechanism of antibiotic 
resistance in bacterial biofilms. However, inherently higher 
mutation rates have been anticipated in biofilms because of 
higher endogenous ROS production which damages the DNA 
more frequently compared to planktonic cells (Boles and Singh 
2008). In line with this hypothesis, the presence of antioxidants 
in the culture of S. aureus biofilms revealed lower mutation 
frequency which was comparable to the mutation frequency in 
their planktonic counterparts (Ryder et al. 2012). Compared to 
planktonic life style, biofilms were reported to promote 
mutation at higher frequency which results in emergence of 
stable hypermutable strains (Driffield et al. 2008). In cystic 
fibrosis patients, the P. aeruginosa isolates with defective DNA 
oxidative repair mechanism were found to be more resistant to 
antibiotics compared to normal isolates (Oliver et al. 2000; 
Mandsberg et al. 2009). The mutation frequency in 
ciprofloxacin resistant mutants in P. aeruginosa biofilm was 
100 times (Driffield et al. 2008) and significantly higher in 
Campylobacter jejuni biofilm (Bae and Jeon 2014) compared 
to their planktonic forms. Similar observations were reported 
in S. aureus biofilms where muciprocin and rifampin-resistant 
mutants were recovered at higher frequency compared to 

planktonic cells (Ryder et al. 2012). 

5. Approaches to overcome biofilm resistance 
The biofilm-associated infections paralleled by antibiotic 
resistance represents the most gruesome clinical picture in 
terms of both therapeutic cost and outcome. Keeping in view 
the ubiquity and consequences of biofilm formation in clinical 
settings, new methods are warranted urgently to treat such 
biofilm-associated infections. The correct choice and dosage of 
an antibiotic significantly affects the outcome of a treatment 
because some antibiotics may act as agonists or antagonists of 
biofilm formation (Dincer et al. 2020). Under hospital settings 
the application of altered designs of drains and water outlets, 
heat, electromechanical vibrations, anti-biofilm agents such as 
acetic acid and oxidising agents have been successfully tested 
in the removal of biofilms in the environment to keep check on 
biofilm-associated infections (de Jonge et al. 2019; Garvey et 
al. 2019; Smolders et al. 2019). Furthermore, under in vivo 
conditions the mechanical disruption of biofilms of wound 
provides a therapeutic window of 24-48 hours during which 
the antibiotic therapy is most effective (Wolcott et al. 2010) 
and it indicates that biofilm formation takes place within 24-48 
hours of initiation. Therefore, there is a need of new 
combinations of antibiotics and biofilm-disrupting agents to 
effectively overcome biofilm-associated infections. 

Keeping in view the increasing frequency of resistant 
pathogens, the quorum sensing inhibitors in combination with 
the effective antibiotics can exert complementary effects 
against the target pathogens. Such combinations are useful in 
the treatment of chronic biofilm-associated infections – such as 
urinary tract infections, cystic fibrosis, infection of prosthetic 
tools (Dincer et al. 2020). When patulin, a biofilm-disrupting 
agent targeting the AHL – a quorum sensing molecule, is used 
in combination with tobramycin it brings an unprecedented 
killing of P. aeruginosa cells (Rasmussen et al. 2005). The 
combination of quorum sensing inhibitors and tigecycline 
antibiotic caused a four-fold increase in the death rate of S. 
aureus and the treatment efficiency of ciprofloxacin in 
combination with cis-2-decenoic acid increased from 11% to 
87% in S. aureus infection (Simonetti et al. 2013). The 
commonly tested quorum sensing inhibitors are halogenated 
furanone (Lonn-Stensurd et al. 2009), acyclic diamine (Kaur et 
al. 2017), ginseng and garlic extract (Bjarnsholt et al. 2005; 
Song et al. 2010), and nitric oxide (Beloin and Ghigo 2005). 
There are certain naturally produced molecules – D-amino 
acids and nor-spermidine, which disperse the mature biofilms 
in S. aureus and E. coli and in combination with the antibiotics 
they can help prevent biofilm-associated infection (Kolodkin-
Gal et al. 2010, 2012; Hochbaum et al. 2011). Similarly, the 
combination of antibiotics with N-acetyl-cysteine (NAC) and 
Tween 80 effectively destroyed the biofilms of rapidly growing 
mycobacteria and Tween 80 was more effective than NAC 
because of higher mycolic acid content in mycobacteria 
(Munoz-Egea et al. 2016). Use of biofilm matrix degrading 
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enzymes such as DNase I, Dispersin B, and α-amylase degrade 
eDNA, biofilm matrix, and exopolysaccharides, respectively 
(Tetz et al. 2009; Sun et al. 2013), which have prominent role 
in biofilm resistance against antimicrobial agents as discussed 
above. They disperse the biofilms, prevent the formation of 
new biofilms, and increase the penetrance of antibiotics in the 
biofilms of many bacteria such as S. aureus, Vibrio cholerae, P. 
aeruginosa etc. (Kalpana et al. 2012). Furthermore, nano-
formulations have offered a promising alternative to regular 
antibiotics to overcome drug resistance and biofilm-associated 
infections because of their high penetration power through the 
biological membranes. 

6. Conclusions 
Biofilm-associated infections represent a serious medical 
challenge because their eradication is difficult with the 
antibiotic levels normally use against their planktonic forms. 
Biofilms are characterized by their ability to evade not only the 
antibiotic effects but also the host immune system clearance. 
Different antibiotic resistance mechanisms as discussed in this 
review are employed by biofilms depending on the species of 
the bacteria, growth conditions, and the antibiotics involved, 
however, no mechanism is fully established yet. Therefore, a 
generalised mechanism applicable to all pathogens seems 
somewhat unrealistic which warrants the study of biofilm 
resistance of all pathogens individually to visualise the 
multifactorial nature of biofilm antibiotic resistance and to 
arrive at suitable therapeutic options. It is pertinent to mention 
that since no new class of antibiotics have been approved in 
last four decades there is the need of greater understanding of 
biofilm-associated antibiotic resistance to effectively utilise the 
therapeutic value of the existing antibiotics. Although a 
number of anti-biofilm strategies have been put forward as 
discussed above in this review, they are still in nascent stage 
and need to undergo clinical trials to reach the commercial 
market.  
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