
1. Introduction

Vector-borne diseases, fueled by the intricate interplay between 
pathogens, vectors, and hosts, constitute a significant global 
health challenge. These infectious illnesses are primarily 
transmitted through the bites of arthropod vectors, such as 
mosquitoes, ticks, sandflies, and fleas, acting as intermediary 
hosts for pathogens like bacteria, parasites, and viruses (WHO 
2014; Knudsen and Slooff 1992). Diseases like malaria, dengue 
fever, Lyme disease, and Zika virus have led to substantial 
morbidity and mortality worldwide, with changing 
environmental conditions, urbanization, globalization, and 
ecological transformations altering the distribution and 
abundance of vectors, thereby intensifying the global threat of 
these diseases (WHO 2014; Gubler 2009). The dynamic nature 
of vector-borne diseases necessitates advanced predictive tools 
to anticipate their emergence, spread, and impact on human 
populations (Wilson et al. 2020). In recent years, machine 
learning approaches, specifically function classifiers, have 
emerged as powerful tools in epidemiology, providing the 
potential to enhance our understanding of the complex 
interactions between environmental factors, vectors, and 

pathogens (Basu et al. 2020; Uddin et al. 2019). 

This study explores the application of function classifiers 
in predicting vector-borne diseases, emphasizing their capacity 
to discern intricate patterns within diverse datasets. Function 
classifiers, a subset of machine learning algorithms, leverage 
mathematical functions to map input features to specific 
outputs, allowing for the identification of complex relationships 
within multidimensional data (Almustafa 2020). These 
classifiers hold promise for predicting the occurrence and 
spread of vector-borne diseases by analyzing diverse sets of 
variables, including climatic conditions, land use patterns, and 
socio-economic factors. In contrast to traditional statistical 
methods, function classifiers excel at capturing non-linear and 
interactive effects, providing a more nuanced understanding of 
the intricate dynamics underlying disease transmission (Kaur et 
al. 2022; Raizada et al. 2021; Shaikh et al. 2023). This study aims 
to predict vector-borne diseases by employing function 
classifiers, leveraging advanced computational techniques. It 
focuses on identifying the most effective classifier within the 
function classifiers domain to enhance disease prediction 
accuracy and inform targeted interventions. Through rigorous 
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Abstract 

This paper evaluates various machine learning models for predicting vector-borne diseases, 
focusing on performance metrics that reveal insights into their efficacy. The Multilayer Perceptron 
(MLP) model demonstrated the highest accuracy at 92%, surpassing the Simple Logistic (SL) and 
Support Vector Machine (SVM) models, which achieved 88% and 90.87% accuracy, respectively. 
Notably, the MLP model excelled in precision, recall, and F-Measure, indicating superior 
classification accuracy. Conversely, the SVM model exhibited noteworthy computational efficiency 
with the lowest processing time at 0.3 seconds, emphasizing its potential for real-time applications 
in public health interventions. In contrast, the Radial Basis Function Network (RBFN) lagged in 
accuracy and other metrics. The results underscore the trade-offs between accuracy and 
computational efficiency, emphasizing the need for a nuanced model selection. Considering the 
holistic evaluation, the SVM model emerged as a compelling choice, balancing high accuracy and 
efficient processing, making it promising for real-time public health applications. This study 
contributes valuable insights into machine learning model performance, emphasizing the 
importance of selecting models tailored to the specific needs of vector-borne disease prediction. As 
we confront emerging infectious diseases, the SVM model stands as an indispensable tool, 
supporting a proactive and data-driven approach to mitigate the global health impact of vector-
borne diseases.
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analysis, it seeks to optimize predictive models for better public 
health outcomes in combating vector-borne illnesses. 
2. Materials and methods

2.1 Data collection and Preprocessing

The investigation into vector-borne diseases in this study relied 
on meticulously curated datasets obtained from reputable 
sources, including Kaggle competitions, research databases, 
and public health organizations (https://www.kaggle.com/
datasets/richardbernat/vector-borne-disease-prediction). A 
heartfelt appreciation is extended to the contributors who have 
devoted their efforts to compile and share invaluable data 
related to vector-borne diseases, enriching the scope and depth 
of this study. This study focuses on 11 vector-borne diseases: 
Chikungunya, Dengue, Zika, Yellow Fever, Rift Valley Fever, 
West Nile Fever, Malaria, Tungiasis, Japanese Encephalitis, 
Plague, and Lyme Disease. Information for this research was 
diligently gathered from diverse sources such as public health 
records, surveillance databases, and relevant literature. The 
dataset, a comprehensive compilation of environmental factors, 
demographic data, and historical disease occurrences form the 
bedrock of the analytical endeavours of this study.

Before embarking on model training, the amassed data 

underwent an extensive preprocessing phase to ensure 
impeccable quality and consistency. This phase encompassed a 
range of tasks, including rigorous cleaning processes, 
addressing missing values, and standardizing data formats. 
Categorical variables were appropriately encoded, and 
numerical features underwent normalization to achieve 
uniformity in scale. Additionally, the dataset underwent 
meticulous curation using WEKA 3.9.6, where outliers and 
extreme values were carefully identified and removed. In 
pursuit of identifying the most influential features for accurate 
disease prediction, a robust feature selection process unfolded. 
This involved the strategic application of statistical techniques 
and domain expertise to discern and filter out less informative 
variables. The objective was to ensure that the input features for 
machine learning models used in this study were not only 
meaningful but also directly relevant to the intricate landscape 
of vector-borne diseases. This comprehensive approach 
underscored the commitment of this study to excellence in data 
handling and analysis, guaranteeing the reliability and 
significance of subsequent findings for the broader field of 
vector-borne disease research.

2.2 Description of utilized models

Total of four machine learning models were used in this study 
including Multilayer Perceptron (MLP), Radial Basis Function 
Network (RBFN), Simple Logistic (SL), and Support Vector 
Machine (SVM) for predicting vector-borne diseases. This 
approach allowed for diverse exploration, comparison, and 
evaluation of methodologies, enhancing robustness and aiding 
in model selection for accurate predictions.

2.2.1 Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) model, a type of feedforward 
neural network, is a potent tool in the prediction of vector-
borne diseases (Kumar et al. 2024). Inspired by the human 
brain, an MLP consists of interconnected nodes organized into 
layers, including an input layer, one or more hidden layers, and 
an output layer (Fig 2). In the context of vector-borne diseases, 
the MLP model processes input data related to environmental 
conditions, demographic factors, and historical disease 
occurrences through the input layer. The hidden layers, 
characterized by nodes employing weighted connections and 
activation functions, enable the network to discern intricate 
patterns and non-linear relationships within the data (Javaid et 
al. 2023; Kofidou et al. 2021). The output layer provides 
predictions or classifications, such as the likelihood of vector-
borne disease occurrence in a specific region or population. 
Activation functions in the output layer depend on the nature 
of the prediction task, employing sigmoid functions for binary 
classification and softmax functions for multiclass classification. 
Training an MLP involves adjusting weights and biases to 
minimize the difference between predicted outputs and actual 
outcomes, typically utilizing optimization algorithms like 
gradient descent (Javaid et al. 2023).

MLP models excel in capturing complex patterns and 
relationships within datasets, especially in scenarios where 
traditional linear models may be inadequate (Tito et al. 2023). 
Their ability to handle non-linearities and interactions between 
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Fig. 1: Operational workflow the study
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features makes them well-suited for predicting the occurrence 
and spread of vector-borne diseases. However, successful 
implementation requires careful tuning of hyperparameters 
such as the number of hidden layers, nodes, and learning rates 
(Kumar et al. 2024). In the context of vector-borne diseases, 
MLP models contribute to more accurate predictions, assisting 
public health officials in proactive measures and interventions. 
By leveraging the strengths of artificial neural networks, MLP 
models enhance the understanding of complex disease 
dynamics, ultimately aiding in the development of targeted 
strategies to mitigate the impact of vector-borne diseases on 
communities (Erraguntla et al. 2019).

2.2.2 Radial Basis Function Network (RBFN)

The Radial Basis Function Network (RBFN) model emerges as a 
potent tool in the context of predicting and understanding 
vector-borne diseases. The RBFN model, a type of artificial 
neural network, excels in capturing complex non-linear 
relationships within datasets (Kesorn et al. 2015), a feature 
crucial in deciphering the intricate dynamics of vector-borne 
diseases. In the realm of disease prediction, the RBFN model 
proves particularly adept at handling the multifaceted interplay 
between environmental factors, host characteristics, and 
pathogen behaviour. By leveraging radial basis functions, this 
model can effectively map the input features onto a high-
dimensional space, allowing it to discern subtle patterns and 
interactions that may elude traditional linear models. The 
RBFN's ability to adapt and generalize makes it a valuable asset 
for forecasting the spatial and temporal spread of vector-borne 
diseases, contributing significantly to the development of 
robust predictive models and informed public health 

interventions (Alfred and Obit 2021; da Silva et al. 2022).

2.2.3 Simple Logistic (SL)

The Simple Logistic model, a fundamental component in 
predictive modeling, offers a straightforward yet powerful 
approach when applied to the study of vector-borne diseases. 
In the context of these diseases, the Simple Logistic model aims 
to predict the likelihood of occurrence or spread based on a set 
of input features. Typically used when the outcome variable is 
binary (e.g., presence or absence of a particular vector-borne 
disease), this model estimates the probability of the event 
occurring (Eisen and Eisen 2011). It employs the logistic 
function to transform a linear combination of predictor 
variables into a probability score, which is then thresholded to 
make predictions. The Simple Logistic model is particularly 
useful in vector-borne disease research, where understanding 
the factors influencing disease presence is essential for effective 
public health interventions. It provides a foundational 
framework for analyzing and interpreting the relationships 
between various predictors, contributing valuable insights into 
the dynamics of vector-borne diseases and aiding in the 
identification of key factors influencing their occurrence 
(Brownstein et al. 2002).

2.2.4 Support Vector Machines (SVM)

Support Vector Machines (SVM) serve as a formidable tool in 
the realm of vector-borne disease prediction. SVM, a supervised 
machine learning algorithm (Fig. 3), is particularly well-suited 
for complex datasets characterized by non-linear relationships. 
In the context of vector-borne diseases, where diverse factors 
such as climate, demographics, and historical occurrences 
intricately influence transmission dynamics, SVM excels at 
discerning patterns that may elude traditional methods 
(Raizada et al. 2020). By transforming the input data into a 
higher-dimensional space and identifying an optimal 
hyperplane that maximally separates different classes of vector-
borne diseases, SVM achieves a remarkable ability to classify 
and predict instances. The flexibility of SVM allows it to adapt 
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Fig. 3: Visual representation of Support Vector Machines 
(SVM) model (Arifuzzaman et al. 2021)

Fig. 2: Visual representation of Multilayer Perceptron (MLP) 
Model



to the intricacies of disease spread, providing a robust 
framework for understanding the multifaceted interactions 
between vectors, hosts, and environmental variables. 
Leveraging SVM in the prediction of vector-borne diseases not 
only enhances accuracy but also offers valuable insights into 
the intricate dynamics governing the spatial and temporal 
patterns of these diseases, ultimately contributing to more 
effective public health interventions (Fuchida et al. 2017; 
Munirathinam et al. 2023).

3. Result and Discussions

From the evaluation of various machine learning models for 
predicting vector-borne diseases, the performance metrics 
reveal intriguing insights. The Multilayer Perceptron (MLP) 
model exhibited the highest accuracy at 92%, closely followed 
by the Simple Logistic (SL) and Support Vector Machine (SVM) 
models at 88% and 90.87%, respectively. The MLP model also 
outshined others in terms of precision, recall, and F-Measure, 
indicating its superior ability to correctly classify instances and 
balance between false positives and false negatives (Table 1). 
However, the SVM model demonstrated noteworthy efficiency 
with the lowest processing time at 0.3 seconds, suggesting its 
computational advantage. On the other hand, the RBFN lags 
behind in terms of accuracy, precision, and recall.

The results showcased the trade-offs between accuracy, 
computational efficiency, and other performance metrics, 
emphasizing the need for a nuanced decision in selecting the 
most suitable model for vector-borne disease prediction. 
Considering the holistic evaluation, the SVM model emerged as 
a compelling choice (Fig 4), striking a balance between high 
accuracy and efficient processing time, making it a promising 
candidate for real-time applications in public health 
interventions. The application of machine learning (ML) in 
predicting vector-borne diseases represents a pivotal 
advancement in the field of public health. The results presented 

in this study underscore the efficacy of ML models, specifically 
Multilayer Perceptron (MLP), Radial Basis Function Network 
(RBFN), Simple Logistic (SL), and Support Vector Machine 
(SVM), in discerning complex patterns inherent in the 
transmission dynamics of vector-borne diseases.
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Table 1 Summarized results of four Machine Learning Models

Model MLP RBFN SL SVM

Evaluation 
Criteria

Accuracy 92.0% 82.0% 88.0% 90.9%

Root mean squared error 0.1120 0.1784 0.1321 0.2642

Mean absolute error 0.0255 0.0327 0.0245 0.1492

Relative absolute error 15.32% 19.70% 14.73% 90.24%

Root relative squared error 38.75% 61.73% 45.70% 91.86%

Kappa statistic 0.9105 0.7987 0.8658 0.8996

Precision 0.934 0.888 0.912 0.913

Recall 0.920 0.820 0.880 0.909

F-Measure 0.917 0.814 0.873 0.908

Processing Time (s) 3.37 0.75 0.43 0.30

MLP - Multilayer Perceptron; RBFN - Radial Basis Function Network; SL - Simple Logistic; SVM - Support Vector Machine

Fig. 4: Visual representation showcasing the efficacy of 
different ML models



The high accuracy achieved by these models, particularly 
the MLP and SVM, suggests their potential as robust tools for 
early detection and proactive management of outbreaks. The 
comprehensive evaluation metrics, including precision, recall, 
and F-Measure, provide a holistic understanding of the models' 
performance, highlighting their ability to balance true positives, 
true negatives, false positives, and false negatives. Kappa 
Statistics provide insights into the reliability and validity of the 
predictive models by quantifying the agreement between 
predicted and observed outcomes. This metric helped for the 
evaluation of the model's performance while considering the 
possibility of chance agreement, thus offered a more nuanced 
evaluation of the predictive accuracy and robustness of the 
disease prediction models. Furthermore, the consideration of 
processing time unveils practical implications for real-time 
applications, with the SVM model demonstrating notable 
efficiency. The study not only contributes valuable insights into 
the comparative performance of ML models but also 
underscores the significance of selecting an appropriate model 
that aligns with the specific needs of vector-borne disease 
prediction. As this study navigates the landscape of emerging 
infectious diseases, ML-driven predictive models stand as 
indispensable tools, fostering a proactive and data-driven 
approach to mitigate the impact of vector-borne diseases on 
global health.

4. Conclusions

Utilization of machine learning (ML) function classifiers did 
indeed contribute to more accurate prediction of outbreaks and 
identification of areas at higher risk for vector-borne diseases. 
By analyzing various data inputs such as climate conditions, 
environmental factors, host population dynamics, vector 
abundance, and historical disease incidence, ML models could 
detect patterns and relationships that humans might have 
overlooked, thus enhancing predictive capabilities. After the 
evaluation of function classifier models for predicting vector-
borne diseases, Support Vector Machine (SVM) showed the best 
result based on different evaluation criteria. With an impressive 
accuracy of 90.87% and notable efficiency reflected in the lowest 
processing time at 0.3 seconds, the SVM model emerges as a 
compelling choice for real-time applications in public health 
interventions. Its ability to strike a balance between high 
accuracy and efficient processing highlights its potential as a 
robust tool for early detection and proactive management of 
vector-borne disease outbreaks. The comprehensive evaluation 
metrics, including precision, recall, and F-Measure, further 
validate the SVM model's efficacy in achieving a nuanced 
understanding of the complex dynamics underlying disease 
transmission.

Recommendations and future work

While recognizing the potential for further enhancement in this 
dataset, its current utility is constrained by specific limitations. 
Machine learning holds promise for predicting various 
diseases, including but not limited to Brucellosis, Subclinical 
Mastitis, Anthrax, and LSD.
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