
1. Introduction

Nanoparticles (NPs), generally, fall within the size range of 1 
to 100 nm (Ijaz et al. 2020; Shah et al. 2021; Khan et al. 2022). 
They possess specific characteristics due to their small size, 
shape, charge, and high surface area-to-volume (A/v) ratio 
(Ramakoti et al. 2023). Artificial or synthesized NPs have 
industrial applications in agriculture, livestock, poultry, 
electronic gadgetry, energy, and medicine (Raha and 
Ahmaruzzaman 2022; Kausar et al. 2023). Most of the methods, 
such as chemical fusion, physical vapour transport (PVT), and 
material synthesis (MS) are used to produce artificial NPs 
(Nene et al. 2021). Nps are used as drugs to treat different 
disease conditions in animals and humans (Sadiq et al. 2023). 
They are highly effective against bacterial (Singh et al. 2020), 
fungal (Mba and Nweze 2020), parasitic (Bajwa et al. 2022), 
and viral infections (Hamidzade et al. 2024).

The immune system is a defense system of the body that 
recognizes foreign material, kills it, and saves the body from 

any harm caused by the material (Lin et al. 2020). It is well-
recognized that a variety of inflammatory diseases, as well as 
benign and malignant cancers, are caused by aberrant immune 
systems (Sriharikrishnaa et al. 2023). Immune reactions can be 
divided into two categories based on the time of response 
(Breloer and Linnemann 2024). First is innate immunity which 
is acquired from birth and consists of predesigned tissue 
proteins that can instantly defend the living organism against 
the pathogen, and hence is called the first line of defense 
(Garcia et al. 2021). Different complementary systems, 
antibodies, peptides, lysozyme, C reactive protein, etc. have 
been induced once the foreign body passes the first line of 
defense (Liu et al. 2022). Next, a variety of cells including mast 
cells, neutrophils, basophils, dendritic cells, and macrophages 
form the second line of defense (Harvanova et al. 2023). If the 
foreign body passes the body's defenses and enters into the 
spleen, lymph nodes, thymus, tissues, and lymph nodes, then 
the third line of defense is the adaptive immune response 
(Kiboneka 2021). Unlike innate immunity, adaptive immunity 
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requires specific antigen stimulation and develops 
approximately four days following a foreign invasion. Cell-
mediated immunity primarily involves cytotoxic T cells that 
can recognize afflicted cells and induce cell death (Dileepan et 
al. 2023).

Several inflammatory disorders are brought on by aberrant 
immune responses that induce either systemic or localized 
inflammation (Gusev and Zhuravleva 2022). Anti-inflammatory 
drugs are currently the cornerstone of care for conditions 
involving inflammation, and they may help achieve a balance 
between the immune system and the inflammatory response 
(Ribeiro et al. 2024; Sinibaldi 2024). Nevertheless, minimal cell 
specificity (Chen et al. 2022), general adverse reactions 
(Sonsupap et al. 2023), and inefficiency in overcoming 
biological barriers (Li et al. 2024) challenge the old drugs and 
move toward more effective alternatives (Hemrajani et al. 
2022). Current research focuses on mixed substances that 
exhibit improved specificity and anti-inflammatory properties. 
This paper aims to provide an overview of the interaction of 
NPs with immune systems, including various chemicals linked 
to inflammation. This paper discusses many inflammations in 
which NPs are used to treat to provide recommendations for 
future research and the development of nanotools.

2. Interaction of NPs and Macrophages: Activation of 
innate immune response

Every macrophage originates from monocytes that are in 
circulation (Heo et al. 2019). Progenitor cells from the 
embryonic yolk sac were able to give birth to macrophages, 
even in the absence of hematopoietic stem cells (Ito et al. 2022). 
Furthermore, the study demonstrated that the majority of 
tissue-resident macrophages, including those seen in the dermis 
(Cao et al. 2024), liver (Wang et al. 2024), lungs (Langelage 
2024), spleen (Sun et al. 2024), brain (Sun and Jiang 2024), and 
to a lesser extent, kidneys (Chew et al. 2024) originated from 
this embryonic stream. M1 and M2 macrophages are the two 
primary types, from which various M subtypes such as M2a, 
M2b, M2c, and M2d can be distinguished (Strizova et al. 2023). 
Membrane receptors, biological activities, signaling, and 
glycoprotein production profiles vary throughout macrophage 
subtypes. M2 subpopulations have different cytokine 
production profiles and functions and arise in response to 
distinct stimuli (Cutolo et al. 2022). Interleukin (IL-4 and 13) 
activated M2a cells, which are involved in the healing process, 
showed large quantities of mannose receptor C type 1 (MRC1), 
arginine1, and inflammatory zone proteins (de Brito Sousa et al. 
2020). They produce pro-fibrotic, IL-10, and chemokine (CCL17, 
CCL18, and CCL22) (Wroblewska et al. 2023). M2b 
macrophages release growth factors, chemokines, and 
interleukins and regulate the immune system and inflammation 
(Zhang et al. 2012). M2c macrophages release IL-10, TGF-β, and 
CCL. M2b macrophages are also known as inactivated 
macrophages and undergo efferocytosis (Yousaf et al. 2023). 
The last subtype of macrophages called M2d is the main 
element of the tumor microenvironment (Basak et al. 2023).

Macrophages are commonly exposed to NPs through the 
oral or parenteral administration of NP based drugs or by 

inhalation of atmospheric NPs from a polluted environment, or 
internal generation of NPs as a result of metallic implant 
breakdown (Ferdous and Nemmar 2020). Moreover, after 
penetration through human body, NPs may also interact with 
macrophages and can provoke inflammatory response (Soni et 
al. 2024). The signaling proteins such as chemokines and 
cytokines are associate with the inflammatory response, which 
facilitate the molecular activities and interaction between 
macrophages (Tomlin and Piccinini 2018). The positively 
charged NPs generally have a greater potential of creating 
inflammation (Ajdary et al. 2018) and such strong interaction is 
due to the fact that the negatively charged sialic acid surface 
strongly interacts with the positively charged NPs (Ghosh et 
al. 2023). It is well known that macrophage cells recognize 
foreign antigens through their toll-like receptors (TLRs) 
(Chakraborty et al. 2023). Receptors will bind with the 
respective antigens, inducing the signal transduction and thus 
inflammatory response through (Soleiman-Meigooni et al. 
2024). Logesh et al. (2023) have demonstrated increased 
expressions of TLR receptors and inflammatory cytokine 
productions in human macrophage cells treated with nontoxic 
doses of different metallic NPs. Titanium oxide (TiO2) NPs 
produced pro-inflammatory mediators in human neutrophils 
e.g. the chemokine Growth factor-α, IL-8, and Interleukin (IL)-6 
(Mohammapdour and Ghandehari 2022). These cytokines can 
stimulate immune cells and cause inflammation.

However, an in vivo study of sub-chronic accumulation in 
the spleen and thymus in humans and the immunotoxicity of 
TiO2 particles (given intragastrically for 90 days) in the spleen 
showed the increase of several fibroblast growth factors, 
tyrosine phosphatase (TP) and kinases, monocyte chemotactic 
protein-1 (MCP-1), IL-13, and macrophage inflammatory 
proteins (MIP-1α, MIP-2), tyrosine phosphatase (TP) and 
kinases, and monocyte chemotactic protein-1 (MCP-1) (Brand et 
al. 2020; Chen et al. 2020). While the transmembrane protein 
(NKG2D, NKp46, and 2B4) expressions were lowered (Sung 
and Jang 2018). In one of the studies when metal oxide NPs 
were given to the mice, they increased the IL-1, tumor necrosis 
factors (TNF-α), and IL-6. Moreover, they noted a rise in the 
production of IgE (Park et al. 2014). In another study, the effects 
of Fe3O4 with Glu-Gingerol NPs were investigated using lung 
adenocarcinoma (A549) and normal cell lines (Alkinani et al. 
2024). The results showed antiproliferative effects on lung 
tissue where a malignant tumor was formed (Alkinani et al. 
2024). Tulinska et al. (2020) performed an in vivo study to 
examine the inflammatory response of female mice pulmonary 
cells after administering an accurate dose of cadmium oxide 
NPs and observed an increased concentration of immune 
thymus and spleen cells, and making of inflammatory 
cytokines and chemokines.

3. Activation of adaptive immune response

The adaptive immune response is antigen-specific which 
requires time to attain its maximum ability, and commonly 
works to form an immune database (Raffie et al. 2022). It has 
specific responses to humoral and cellular antigens which are 
triggered by NPs. The adaptive immune system must produce 
antibodies against the NPs (Khan et al. 2023). NPs make 
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interaction with dendritic, B cells, and macrophages in blood 
(Wang et al. 2021). These cells engulf and digest the foreign 
antigens and are present on the surface of both B and T 
lymphocytes (Sharma et al. 2017). The cytokine environment 
and dendritic cells stimulate the T-cell response. Dendritic cells 
produce the cytokine environment when CD4+, T lymphocytes, 
neutrophils, and macrophages are drawn to the inflammatory 
site along with stromal cells (Rosales 2020). To induce T cell 
anergy (self-tolerance) in young dendritic cells, for instance, 
antigens are introduced to them without the production of co-
stimulatory molecules. Foreign antigens activated and matured 
the dendritic cells, which activate Th1, Th2, or Th17 cells 
(Cheng et al. 2023). Strong inflammatory mediators, Th17 cells, 
are important in the emergence of autoimmune disorders. Th1 
cells further control inflammatory responses and facilitate 
cellular immunity. Conversely, Th2 cells drive B cell 
development to create immunoglobulin (Ig) G and IgE, hence 
increasing humoral immunity (Gowthaman et al. 2020). They 
also induce the proliferation of master cells and eosinophils. 
The innate and adaptive immune systems are linked cellularly 
via dendritic cells (DCs) in the thymus-dependent pathway 
(TD) route (Pondman et al. 2023). Through their TLRs, 
immature DCs engage with and ingest NPs, which triggers DC 
maturation toward APC.

Tulinska et al. (2022) demonstrated the proliferative 
response of T-lymphocytes of spleen cells of experimental mice 
when copper oxide NPs were inhaled. These NPs also increase 
the production of interleukins and cytokines but no significant 
effect on the production level of TNF-α was seen. Copper oxide 
NPs do also induce the pro-activation of Th1 and Th2 
lymphocytes (Th1 and Th2), signifying adaptive immunity. 
Many studies have shown that NPs can also play the role of 
adjuvants. For instance, NPs of aluminum hydroxide, Al 
(OH)3, and polymethylmethacrylate, and PMMA are adjuvants 
of the vaccine for the HIV-2 virus in mice for enhancing the 
extent of the antibody response (Garg and Dewangan 2020). 
Although the precise mechanism of how NPs function as 
adjuvants is unknown (Abusalah et al. 2023), recent studies 
indicate that they might activate APCs and enhance antigen 
uptake (Kaneko et al. 2021). It has also been noted that nano 
size particles can give a better humoral immune response 
compared to their micro sizes, even when using the same 
chemical composition (Gamucci et al. 2014). NPs can increase 
or decrease the responses of allergy. According to Chen et al. 
(2020), mast cell histamine release was directly induced by TiO2 
NPs. Mast cells have been linked to both inflammation and 
some harmful effects of NPs. There is mounting evidence that 
mast cells play a significant part in the biological processes that 
occur after being exposed to NPs. From the above studies, one 
can easily understand how NPs stimulate the immune system 
of the body but on the other hand, they are involved in 
immunosuppression.

4. Immunosuppression by NPs

Immunosuppression can reduce the body's resistance to 
infection and malignant cells (Togashi et al. 2019). But it can 
also help in the improvement of the treatments of autoimmune 
diseases and allergies. It also helps in decreasing the rejection of 

the body toward transplanted organs (Poudel et al. 2024). Many 
researchers have shown the immunostimulatory properties of 
nanoparticles (Lin et al. 2024; Mozafri et al. 2024) and a few 
studies described the immunosuppressive properties of NPs 
(Shen et al. 2012). For example, noble metal NPs, like gold and 
silver, might induce an immunosuppressive response (Zhao et 
al. 2022). Noble metal NPs react with both the innate and 
adaptive immune systems (Boraschi et al. 2023). The 
immunosuppression caused by Ag NPs has not been 
documented as extensively as that of Au NPs. It has been 
documented that the production of cytokines is stimulated by 
Ag NPs (Ninan et al. 2020). Zheng et al. (2024) showed that 
when Ag NPs are applied topically at a wound site cause 
modulation of cytokines. TGF-β1 levels were increased during 
the healing phase, although IL-6 mRNA expression was 
significantly reduced. Topical and systemic application reports 
of Ag NPs have also been received (Madawi et al. 2023; Zhao et 
al. 2024). It is crucial to remember that topical treatment of 
silver NPs demonstrated both a significant reduction in 
inflammatory cytokines and widespread inflammatory cell 
death. Numerous in vitro studies emphasizing the 
immunosuppressive characteristics of examined nanomaterials 
concentrate on a restricted range of cellular functions, primarily 
cytokine production and surface indicator expression (Stater et 
al. 2021; Dobrovolskaia 2022; Aljabali et al. 2023). The 
information is less to declare the immunosuppressive 
properties of Nps. For Example, these properties are not always 
present in NPs that produce anti-inflammatory TGF-β. TGF-β 
stops lymphocyte proliferation with the combination of specific 
cytokines. It also promotes the growth of some specific helper T 
cells, which cause inflammation in a range of autoimmune 
diseases (Zhang and Bevan 2012). Certain NPs can stimulate 
certain immunological functions (Pondman et al. 2023) while 
suppressing others (Muhammad et al. 2020). For example, silica 
oxide NPs increased the production of the pro-inflammatory 
cytokines TNF-α and IL-1β by lowering the expressive response 
of the innate immune receptor TLR9 and stopping 
immunological responses to CpG oligonucleotides (Liu et al. 
2021). It has been proposed that the diverse responses seen are 
caused by the numerous paths through which nanoparticles 
enter cells and the numerous ways in which they disrupt the 
function of immune cells (Polo et al. 2017). According to other 
research, immunosuppressive medications can be delivered by 
NPs and the immunosuppressive effects of small-molecule 
medications can be avoided (Kiaie et al. 2023). Glucocorticoids 
were injected intravenously along with poly D,L-lactide-co-
glycolide (PLGA) NPs into the inflammatory joints in a mouse 
model of arthritis (Mohanty et al. 2019). The inflammatory 
response was completely suppressed with PLGA NPs and the 
reason for the increased efficacy is regular release of steroids 
from the NPs.

The toxicity of chemicals to the T cells is one of the 
c o m m o n m o d e s o f a c t i o n f o r t h e i n d u c t i o n o f 
immunosuppression (Bou Zerdan et al. 2021). For instance, 
several immunosuppressive chemicals, like radiation, 
cadmium, tetrachlorodibenzo-p-dioxin, corticosteroids, and 
cadmium, act through their action on T cells, interfering with 
their proliferation and functions. The humoral response is the 
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process by which B cells identify foreign bodies in the blood 
(Mahmoud et al. 2023). It has been shown that iron oxide NPs 
follow the humoral immune response. Iron oxide NPs 
decreased the expression of TNF-α, IL-6, and interferon-γ and 
stopped macrophage and Th-cell activity. TNF-α and IL-6 are 
two cytokines that contribute to systemic inflammation (Shen et 
al. 2012). Moreover, the iron oxide NPs stopped the allergic 
reactions and altered the balance of the T helper cell (Deng et al. 
2023). In a different animal model, microglia cells are treated 
with iron oxide NPs before being stimulated by an endotoxin 
which produces less IL-1β. IL-1β was attenuated by the iron 
oxide NPs through the inhibition of cytokine processing 
pathways (Shen et al. 2012). Other studies have demonstrated 
the immunosuppressive properties of NPs (Wang et al. 2022). 
On the other hand, existing immunosuppressive medications 
carry the risk of causing immunodeficiency, which can lead to 
greater cytotoxicity and genotoxicity to the active nanomaterial, 
as well as increased vulnerability to opportunistic infections 
and bone marrow deterioration (myelosuppression) (Hofer et 
al. 2022). Nonetheless, a few research projects have suggested 
using NPs to treat autoimmune disorders (He et al. 2023) and as 
a best agent for fruitful drug delivery (Paroha et al. 2023).

5. Anti-inflammatory properties of NPs

In the last few decades, NPs have gained attention as possible 
anti-inflammatory drugs (Mohsin et al. 2024). Many NPs have 
been used for this purpose because of their size, shape, and 
other peculiar properties. The mechanism of anti-inflammatory 

action of NPs is described below.

5.1 Anti-inflammatory mechanism

The body's initial reaction to intracellular damage, disease, 
hormone imbalance, internal organs, stimulus, or external 
causes such as a foreign particle or harmful bacterium invasion 
is inflammation (Gusev and Zhuravleva 2022). Inflammation 
can also result from environmental contaminants, food 
sensitivities, or obesity. Innate immune cells have antigen 
receptors that recognize chemicals from invading organisms 
and cells and produce an immune response (Boraschi et al. 
2020). Tissue damage produces inflammation. It is also 
produced when foreign organisms invade the cells and this 
response stimulates the activity of immunity cells that help the 
body tackle these situations (Abaricia et al. 2021; Shanley et al. 
2021). One important function of macrophages is to auto-
regulate the inflammatory process. Macrophages are large, 
uninucleate, phagocytic, immunological, and formed in the 
bone marrow cells that circulate as mobile leukocytes. They are 
also referred to as monocytes in the bloodstream (Sanchez and 
Gustavo 2021). These monocytes go to infection sites and form 
macrophages in diverse organs. As mentioned above two 
important types of macrophages i.e. M2 and M1 take part in the 
anti-inflammatory reaction. Macrophages switch among these 
two phenotypes based on the state of the response, initiating, 
regulating, and maintaining the inflammatory process (Martin 
and Garcia 2021; Gupta and Sarangi 2023). In response to 
inflammation, neutrophils migrate to the site of inflammation, 
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release pro-inflammatory mediators, and draw macrophages 
(Daseke et al. 2021). Macrophages produce activation signals 
that trigger the phagocytosis of cellular and tissue debris (Wu 
and Lu 2019). This mechanism occurs both to initiate and 
sustain inflammation. Proteins, lipopolysaccharides (LPS), and 
cytokines such as interleukins, interferons, chemokines, 

lymphokines, and tumor necrosis growth factors are a few of 
these activation signals (Mir et al. 2023).

5.2 Anti-inflammatory Mechanism Induced by NPs

NPs can enter a cell via ion channels or holes in the cell 
membrane (Zhu et al. 2024). The size of the NP determines this 
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Table 1 Anti-inflammatory properties shown by various nanoparticles

Nanoparticle Reducing agent Size (nm) Shape Mechanism reported Reference

Ag Acranythes aspera 20-35 Cubical, rectangular, 
spherical

Inhibition of paw edema or 
swelling

(Vijayaraj and 
Vidhya 2016)

Ag Leucas aspera 25-80 Clustered and 
irregular Reduction in edema or swelling (Kumaran et al. 

2017)

Ag Dodonaea viscose 60-90 Spherical Albumin denaturation is 
inhibited

(Giridharan et al. 
2014)

Ag Rosa indica 23.52-60.83 Spherical NO and superoxide production is 
attenuated

(Manikandan et 
al. 2015)

Ag Viburnum opulus 10-50 Spherical Cytokine production is decreased 
and edema is also reduced

(Moldovan et al. 
2017)

Ag Pteristriparita sw 32 hexagonal, rod-
shaped Reduction in edema (Baskaran et al. 

2016)

Ag Terminalia catappa 10 Spherical Enzyme inhibition (El-Rafie and 
Hamed 2014)

Ag European black 
elderberry 20-80 Spherical The decrease in cytokine 

production, reduction in edema (David et al. 2014)

Ag Calophyllum 
tomentosum ------- Spherical Inhibition of albumin 

denaturation
(Govindappa et 
al. 2018)

Ag Piper nigrum 40-100 Spherical and 
cuboidal Cytokine production is decreased (Mani et al. 2015)

Ag Dalbergia spinosa 18 Spherical Stabilize the membrane of the 
RBC

(Muniyappan and 
Nagarajan 2014)

Ag Black Pepper 40-100 Cuboidal and 
spherical Reduction in edema (Mani et al. 2015)

Ag Salvia officinalis 16 Spherical COX-2 expression is suppressed (Agarwal et al. 
2019)

Ag Rosa damascena 60-80 Spherical Edema was reduced (Ahmad et al. 
2015)

Ag Centratherum 
punctatum 50-100 Spherical

Denaturation of the protein is 
inhibited, membrane of RBC is 
stabilized

(Krithika et al. 
2016)

Ag Syzygium aromaticum ——- ——— Downregulation of cytokines, 
Inhibition of protein denaturation

(Varghese et al. 
2017)

Ag Chamaemelum nobile 24 Spherical Cytokine production is reduced (Erjaee et al. 2017)

Au/ Ag Litchi chinensis ——- ——— Reduction in edema (Murad et al. 
2018)

Au/Ag Prunus domestica 7-30 Au, 
3-30 Ag

Spherical (Ag), 
Hexagonal (Au)

The decrease in Pro-
inflammatory cytokines and 
inflammatory mediators

(Islam et al. 2017)

Au/Ag Prunus serrulata 66 Ag, 65 Au Hexagonal Au, 
Spherical Ag

LPS-induced NO release was 
inhibited (Singh et al. 2018)

Ag Acranythes aspera 20-35 Cubical, rectangular, 
spherical

Inhibition of paw edema or 
swelling

(Vijayaraj and 
Vidhya  2016)



infiltration mode. Without the need for membrane receptors, 
NP is taken up by cells through sticky contacts brought on by 
steric, van der Waals, or electrostatic forces (Dogra et al. 2019). 
Depending on where the NP is located within the cell, which 
again relies on its size, different cellular actions are activated. 
Certain small-sized metal NPs are easily endocytosed by the 
majority of cellular vesicles at greater concentration levels (Xu 
et al. 2023). Macrophages and neutrophils perform 
phagocytosis and micropinocytosis. The protein corona that 
envelops the protein-coated metal nanoparticles gets into 
proximity to the cell surface receptors during interactions 
between the NPs and neutrophils or macrophages in 
inflammatory areas (Kyriakides et al. 2021). This protein corona 
is constituted by serum proteins and acts as a ligand for the 
M2 macrophage receptors, hence inducing anti-inflammation 
(Tuli et al. 2023). The studies indicate that M2 macrophages 
absorb NP at a higher rate than M1 macrophages in the 
presence of serum proteins (Andrade et al. 2020). According to 
an investigation using phagocytosis gene arrays in M1 and M2 
cells, in M2 macrophages, an extraordinary upregulation of 
receptors of immunoglobulins and complement factors occurs 
(Mariotton et al. 2021). This presumably implies that the 
receptors induced by M2 attach themselves to the protein 
corona. This also goes on to imply that improvement in NP 
absorption by M2 macrophages is totally dependent upon the 
adsorption of serum proteins, especially immunoglobulins 
and complement components. Following an exogenous stimuli 
(infectious organisms and foreign particles) and internal 
stimuli (uric acid and cholesterol), neutrophils surround these 
targets with extracellular traps NETs (Bonaventura et al. 2018). 
For the development of NETs, ROS radicals are needed as well 
as a group of protein kinase 3 enzymes (Stojkov et al. 2022). 
Because ROS have unpaired electrons in their outermost shells, 
they are extremely erratic and reactive. They are formed by 
lipid peroxide inside the cell, which damages membranes. This 
results in an increase in the cell membrane's surface area, which 
increases the O2 absorption and, consequently, the formation of 
ROS. Gold NPs are readily entangled in these NETs (Saafane 
and Girard 2022; Vanharen et al. 2023).

A study has been done in which the anti-inflammatory 
response of NPs is checked to treat type 1 diabetes (T1D) in 
mice. The study showed that if polyethylene glycol (PEG)-
PLGA loaded with insulin is given orally it reduces 
hyperglycemia. In T1D patients, oral PLGA NPs containing 
TGF-β and al-trans retinoic acid produced therapeutic 
regulatory T cells. It has recently been revealed that the 
therapeutic capabilities of bile acid ursodeoxycholic acid 
(pUDCA), which is well-known for its anti-inflammatory and 
immunomodulatory actions, was significantly improved by NP 
polymerization (Horwitz et al. 2021). Furthermore, insulin may 
be administered orally with pUDCA NPs without intestinal 
breakdown. These NPs were quickly and completely absorbed 
by intestinal macrophages and monocytes, which have high 
levels of bile acid TGR5 receptor expression. Their 
differentiation into M2 anti-inflammatory macrophages is the 
outcome of this interaction, which has significant therapeutic 
ramifications (Horwitz et al. 2021). Rapamycin-containing 
p U D C A N P s r e d u c e d h y p e r g l y c e m i a c a u s e d b y 

cyclophosphamide. Insulin-containing pUDCA NPs reduced 
blood glucose, reduced inflammation, and improved survival 
in hyperglycemic NOD mice. The ratio of CD4 Tregs to 
cytotoxic CD8 cells in draining lymph node tissue was reversed 
in both models, indicating a shift in immunogenic dendritic 
cells to tolerogenic ones. Therefore, it appears that pUDCA NPs 
are a first-of-its-kind oral ingestible carrier with exceptional 
therapeutic capabilities that can be used to treat a range of 
inflammatory immune-mediated disorders (Passeri et al. 2021). 
Table 1. Illustrated some nanoparticles with their anti-
inflammatory effects.

6. Conclusions

Nanoparticles possess various characteristics including 
immunosuppressive and anti-inflammatory properties and 
these properties are due to their physiochemical nature i.e. size, 
shape, charge, dose, and surface area. The present data suggest 
that nanoparticles not only exhibit the immuno-stimulant 
activity but also cause a decrease in immunity and have a 
significant role in reducing inflammation. However, data also 
suggested the interaction of nanoparticles with the 
macrophages to reduce inflammation and decrease the production of 
TNF-α and interleukins for immunity suppression. Furthermore, the 
anti-inflammatory properties also depend upon the route of 
administration of nanomaterials, i.e. inhalation, ingestion, and via 
skin.  Future research should concentrate on understanding the 
p r o c e s s e s o f t h e s a m e n a n o p a r t i c l e s i n d u c i n g 
immunostimulation and immunosuppression and figuring out 
what exactly sets off immunomodulatory effects. It is crucial to 
comprehend what causes a given nanoparticle to be 
immunostimulatory in one type and immunosuppressive in 
another. Scientists working on drug delivery formulations will 
benefit from this as they select suitable nanoparticle carriers, 
which will undoubtedly progress the quickly expanding field of 
nano immunotoxicology.
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