
1. Introduction

Nematodes, cestodes, and trematodes belong to helminths that cause 
parasitic infections in domestic and wildlife species including small and 
large ruminants. Among all helminths, nematodes have significant 
importance due to their host-parasite interaction and their effect on the 
host immunity (King and Li 2018). Nematodes and other protozoans 
cause a complex immunological response. The infections due to 
nematodes are much more severe and most of the time they develop 
resistance due to their genetic modifications. Nematodes also have 
zoonotic importance because they cause many human infections but 
most importantly, they target domestic and wildlife species (Thompson 
2023). Several wildlife species are affected by nematode infections 
which cause huge economic and species losses. In most cases, light 
infections will drop the growth and development of the animals, and 
heavy infections cause the death of the animals (Stear et al. 2003). 
Nematode infections play a significant role in determining wildlife 
health and biodiversity. These parasitic worms are common in many 
wildlife species and can affect population dynamics, affecting both 
individual animals and ecosystem stability. Wildlife infected with 
nematodes may experience reduced health, reproductive output, and 

increased vulnerability to predators, which can lead to population 
declines, particularly in species with already small populations (Stear et 
al. 2023). Infection with nematodes can result in severe health 
consequences, including organ damage, nutritional depletion, and 
compromised immune function. For example, gastrointestinal 
nematodes in ruminants and lungworms in some wildlife species can 
lead to malnutrition and respiratory issues, which make animals more 
susceptible to other diseases and environmental stressors (Pybus et al. 
2023). In ecosystems where predator-prey relationships are tightly 
interwoven, such health impacts can also alter predation patterns by 
weakening prey species or reducing their populations, which in turn 
affects predator species and other members of the ecosystem (Postema 
2023).

The significance of nematode infections extends beyond 
individual hosts to influence biodiversity by potentially reducing 
genetic diversity within affected populations. When infection levels are 
high, selective pressure can lead to an increased frequency of resistant 
individuals, potentially limiting genetic variability. Additionally, 
nematode infections can create competition between host species, as 
some hosts become reservoirs for these parasites, spreading them to 
other species, thus altering interspecies dynamics (Elhady et al. 2024). 
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All animal species are infected with parasitic nematodes, which are extremely widespread and 
diverse. Their significance in natural ecosystems is becoming increasingly clear. Host movement 
has long been known to have a significant role in deciding the genetic makeup of parasitic 
nematode populations. More recently, studies have emphasized the significance of nematode life 
histories, environmental factors, and other host ecological components. Parasitic infections by 
nematodes continue to be a major global health concern, particularly in developing nations, 
despite advancements in contemporary human and veterinary treatment. Research on alternative 
treatments for nematode infections has increased due to mounting evidence of these nematodes' 
multidrug resistance and the adverse effects of currently available synthetic pharmaceuticals. In 
this situation, investigating possible botanical antiparasitics which are widely available and priced 
might be a practical substitute. In this review the prevalence of nematodes is summarized and 
how the infection of nematodes can be treated through plant-based drugs instead of conventional 
approaches.
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Moreover, nematodes can have indirect impacts on biodiversity. Some 
nematode species are zoonotic, meaning they can be transmitted to 
humans, especially in regions where wildlife and human populations 
overlap. The presence of zoonotic nematodes requires careful 
management to protect public health while preserving biodiversity, 
which adds complexity to conservation efforts. The dynamic interplay 
between host species, parasite load, and environmental factors 
underscores the importance of understanding and managing nematode 
infections within wildlife populations to safeguard both ecosystem 
health and biodiversity (Otranto and Deplazes 2019). This review is 
focused on various nematode species present in different animals in 
different geographical areas and their transmission to other animals of 
wildlife importance. The second part of the study described the role of 
medicinal plants in controlling nematode infections because they are 
present in every part of the world and more specifically their 
prevalence is higher in North America, Europe, the Middle East, and 
some countries of Asia. 

2. Prevalence of Eustrongylides nematodes

2.1. North America

USA and Mexico were two countries where firstly the Eustrongylides 
nematodes were reported.. The prevalence of infection in Neogobius 
melanostomus ranged from 0.5% in Michigan Lake to 95% in Perca 
flavescens in Lake Huron (Muzzall 1999). Among other fishes such as 
Fundulus heteroclitus, Eustrongylidosis was also reported. The 
intermediate hosts of the infection due to Eustrongylides in the waters 
of Mexico were reported among fishes such as Ictalurus balsanus and 
Alloophorus robusts and the prevalence of the infection ranged from 5.8% 
to 19% (Quiroz-Martinez and Salgado-Maldonado 2012). The fish-
eating birds of the orders Ciconiformes, Egretta thula, Ardea Herodias, 
and E. caerulae are the definitive hosts of Eustrongylides (Ziegler et al. 
2000). In some snakes Thamnophis sirtalis Parietalisi the group of reptiles 
Eustrongylidosis was also reported. Some investigators described on 
biting activity of Eustrongylides nematodes in humans in the states of 
New York, California, New Jersey, and Maryland, but they reported no 
data regarding the prevalence of infection (Narr et al. 1996).

2.2. Europe

Norway, Bulgaria, the UK, Romania, Italy, Lithuania, Serbia, Poland, 
Ukraine, Moldova, and Russia were among the most prominent 
countries in Europe where the prevalence of nematodes was reported. 
In fish that are intermediate hosts, the prevalence of the infection varied 
from 0.13% (Sokolov and Moshu 2014) to about 100% in the members of 
Esox tunica, Silurus glanis, and Perca fluviatilis (Branciari et al. 2016). In 
Ukraine (12-100%), Moldova (up to 100%), and Russia (33.1 to 62.2%) 
highest prevalence of Eustrongylides was recorded in Eastern Europe. 
In fishes of Acipenseridae, Gobiidae, Salmonidae, Percidae, and Cyprinidae 
the Eustrongylides were most commonly found (Sloboda et al. 2010). 
The statements also stated the incursion of definitive hosts, for instance, 
Waterfowl (Phalacrocorax carbo) with the pervasiveness of disease from 
7.14% (Svazas et al. 2011) and wild ducks up to 3.71% (Kavetska et al. 
2012). Reptiles and mammals were unintended hosts for Eustrongylides 
(Sloboda et al. 2010).

2.3. The Middle East

Turkey and Iran were the prominent countries in the Middle East where 
Eustrongylides was reported. The pervasiveness of disease varies in 
intermediate hosts such as fish ranging from 3.5% in Rutilus rutilus 

species to near about 100% in some species of the Sander genus such as 
Sander lucioperca (Metin et al. 2014). Among many other fishes such as 
Perca fluviatilis Abramis brama, and Esox Lucius, Eustrongylides were 
found (Fallah et al. 2015). Among many accidental hosts from 
Amphibian, Rana ridibunda and Pelophylax ridibundus were reported 
(Leon Regagnon 2019). Although in the Middle East prevalence of 
nematodes was high there was no mentioned case of human infection 
in the study.

2.4. Asia

Japan, China, India, and Java were the lands where Eustrongylids were 
found (Honcharov et al. 2022). The infection rate varies among fishes 
from intermediate hosts fluctuating from 6.3% in  Hypomesus 
transpacificus  to 29.3% in  Synbranchus bengalensis (Subekti et al. 2020). 
Recently prevalence of Eustrongylids nematodes known as Gnathostome 
spinigerum were reported in Monopterus albus (Asian swamp eel) (Zhang 
et al. 2021). Another study revealed that Eustrongylids spp. Nematodes 
are prevalent in various species in China, as evidenced by molecular 
analysis of their intra-and interspecific evolutionary variations using 
the COI genes and ITS rDNA regions (Xiong et al. 2013). Similarly, 
Eustrongylids were collected from the Channa punctata found in 
polluted rivers in India along with other ectoparasites (Biswas et al. 
2023). Other than Eustrongylids various gastrointestinal nematodes 
were detected in wildlife species in various regions of Asia including 
India, Pakistan, Bangladesh, Sri Lanka, and China (Otranto and 
Deplazes 2019; Chandrakar et al. 2020; Ahmad et al. 2024).

3. Nematodes of terrestrial vertebrates of wildlife 
Animals

3.1. Parasitic nematodes of marsupials

The parasitic nematodes that transmit disease to macropod marsupials 
are often the topic of population genetic research. A single species of 
nematodes can infect multiple host species, reflecting its adaptability in 
host-parasite interactions and its potential impact on biodiversity and 
disease dynamics (Heppert et al. 2022) of different families. This is due 
to the variation in the genetic structure of the nematodes that they 
adapt according to the situation. It is not always true because some 
studies confirm no genetic variation or variation of some genes that 
does not express much, but it may be due to a smaller number of 
studies on parasites and their less interaction with the host. Table 1 
shows different species of nematodes and their respective hosts as well 
as their genetic makeup.

3.2. Nematodes of terrestrial carnivores

There are various nematodes including the genera of Ancyclostoma, 
Capillaria, Strongyloides, Toxocara, and Trichinella that affect the 
carnivorous vertebrates but the most important are Trichinella spp. They 
have wide geographic and host species ranges. Certain population 
genetic traits, such as differentiation between genetic variations in 
different populations, are shared by Trichinella spp. (La Rosa et al. 2012). 
For instance, genetic divergence was discovered between populations 
of Trichinella pseudospiralis from Australia, North America, Europe, and 
Asia, as well as between populations of Trichinella spiralis from Asia and 
Europe. Trichinella spp. frequently exhibit different genetic structures in 
different population that also vary with the change in geographical area 
(Dunams-Morel et al. 2012). Other species of Trichinella such as T. nelsoni 
prevalent in Kenya and Tanzania are different from the species found in 
South Africa (Di Cesare et al. 2014). Similar to other worms that 
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parasitize big carnivorous animals, Trichinella spp. appear to lack 
population genetic heterogeneity within countries and even in 
continents. This is due to the long-distance dispersion of hosts, which 
encourages substantial gene flow of parasites. Smaller hosts (like rats 
and foxes) may also encourage gene flow for Trichinella spp., allowing 
parasites to spread across otherwise dispersed populations of highly 
mobile hosts (Rothmann and de Waal 2017).

3.3. Parasitic nematodes of rodents

According to mitochondrial sequence analysis of nematode species in 
rodents, populations of the parasite Heligmosomoides polygyrus, which 
infects the European wood mouse (Apodemus sylvaticus), show 
significant population genetic structure throughout the host species' 
range. The mitochondrial mutation rate and generation time of H. 
polygyrus are quicker than those of its host. This suggests that 
mitochondrial genetic drift occurs more quickly in H. polygyrus than in 
A. sylvaticus, which contributes to the relatively stronger population 
genetic structure of H. polygyrus (Nieberding et al. 2008). Both Trichuris 
species are widespread in Europe. T. muris infects rats and mice, 
including A. sylvaticus, and T. arvicolae infects arvicoline rodents, such 
as lemmings and voles. Analysis of both nuclear and mitochondrial loci 
reveals that T. muris and T. arvicolae exhibit widespread population 
genetic structure throughout their geographic distribution, similar to H. 
polygyrus (Wasimuddin et al. 2016). H. polygyrus and both Trichuris 
species showed mostly identical patterns of population genetic 
structure, with a distinction between eastern and western populations 
and more variety in southern populations than in northern ones. The 
rodent hosts' range extension from southern refugia during the last ice 
age, at least 12,000 years ago, may be reflected in these patterns 
(Callejon et al. 2012).

3.4. Amphibian and reptilian parasitic nematodes

Anole lizards (Anolis spp.) are infected by Spauligodon anolis, whilst a 
variety of lizards and snakes are infected by the species complex 
Parapharyngodon cubensis (P. cubensis A, P. cubensis B, and P. cubensis C). 
According to a study on the population genetics of these nematodes, 

which were obtained from a variety of Caribbean Anolis spp. hosts, 
genetic variation was divided across and between islands (Falk and 
Perkins 2013). Nevertheless, populations of S. anolis exhibited more 
genetic differentiation than populations of P. cubensis A or P. cubensis B. 
This is probably because S. anolis has a limited host species range 
consisting of poor dispersers. Nevertheless, populations of S. anolis 
exhibited more genetic differentiation than populations of P. cubensis A 
or P. cubensis B. This is probably due to the fact that S. anolis has a 
limited host species range consisting of poor dispersers (Calsbeek 
2009). However, each of the P. cubensis complex's species uses a greater 
variety of hosts, some of which may be more mobile. However, even 
though their host range varied, cryptic species of Spauligodon atlanticus, 
parasites of Gallotia spp. lizards, all displayed robust genetic structures 
within and across the Canary Isles Islands (Jorge et al. 2011). This may 
be because the geographical ranges of the host species of S. atlanticus do 
not overlap, precluding nematode gene flow between them.

3.5. Parasitic nematodes of ungulates

Since ungulate (hoofed mammal) individuals travel far longer distances 
than rodents, their parasitic nematodes may be able to spread their 
genes more readily. Similar to Teladorsagia boreoarcticus in muskoxen 
(Ovibos moschatus), Ostertagia gruehneri and Marshallagia marshalli, 
parasites of reindeer (Rangifer tarandus), exhibit a lack of population 
genetic organization (Cole and Viney 2018). On the other hand, 
populations of the parasite Mazamastrongylus odocoilei, which affects 
white-tailed deer (Odocoileus virginianus), exhibited genetic structure 
spread to almost all continents (Long et al. 2008). A parasite of many 
deer species (Cervus spp. and Dama spp.) is Dictyocaulus eckerti. While 
D. capreolus displayed relatively lesser genetic diversity and more 
highly genetically structured populations when sampled sympatrically.

3.6. Parasitic nematodes of marine mammals and birds

Among the enopleane vertebrate nematodes, two families named 
Trichinelloidea and Dioctophymatoidea are present in coastal birds, 
while the remaining group of enopleane nematodes is present in 
aquatic organisms. Nematodes of these two families are mostly present 
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Table 1 Marsupial parasitic Strongylid nematodes

Nematode species Definitive host species Genetic 
markers Reference

Cloacina caenis Petrogale assimilis, P. inornate ITS1 and ITS2 (Chilton et al. 2017)

C. robertsi P. assimilis, P. purpureicollis, P. persephone ITS1 & ITS2 (Song et al. 2024)

C. ernabella P. purpureicollis ITS1 & ITS2 (Peacock et al. 2022)

Globocephaloides trifidospicularis Macropus rufogriseus, M. giganteus 24 isozymes (Jabbar et al. 2013)

G. macropodis M. agilis, M. dorsalis ITS1 & ITS2 (Juillard and Ramp 2022)

Labiostrongylus bancrofti M. dorsalis, M. parryi 18 isozymes (Chilton et al. 2011)

L. unicatus M. dorsalis, M. parryi 17 isozymes (Palomba et al. 2021)

Macrostrongylus baylisi M. giganteus, M. erubescenes, M. robustus robustus, M. parryi 27 isozymes (Beveridge and Gasser 2014)

Papillostrongylus labiatus M. dorsalis, M. rufus ITS2 (Cole and Viney 2018)

Paramacropostrongylus typicus M. giganteus, M. fuliginous 37 isozymes (Sukee et al. 2018)

Rugopharynx australis
M. eugenii, Wallabia bicolor, Thylogale billardierii, M. 
robustus, M. rufus, M. giganteus, M. fuliginosus 17 isozymes (Cole and Viney 2018)

R. omega T. stigmatica, M rufogriseus 23 isozymes (Flores et al. 2019)

R. zeta P. assimilis, M. dorsalis 21 isozymes (Akhoundi et al. 2017)

Zoniolaimus mawsonae M. rufus ITS2 (Coley and Viney 2018)



in every organ of the bird but most of the nematodes are found in the 
gastrointestinal tract, gizzard, and proventiculus of the birds. They may 
be found in other organs such as the heart and dermal layers but their 
number is not more than the gastrointestinal parasites. Even every 
nematode has its predilection site. The species of different systematic 
groups generally have their specific predilection sites. Prior to reaching 
the final host, the majority of nematode infections that affect marine 
mammals and birds spread tropically among intermediate species. 
Determinate host individuals will sample broadly from the parasite 
population since hosts of each trophic level are likely to eat several 
infected hosts at the lower trophic levels, causing hosts to mass 
parasites from a range of sources. This might result in genetically 
varied parasite intrapopulation that prevents inbreeding and 
encourages elevated Ne levels (Cole and Viney 2018). The gene flow of 
their parasitic nematode populations is predicted to be strong due to 
the long travel lengths of many marine fish, mammal, and bird hosts; 
this implies that these worm populations will show minimal genetic 
structure. A large number of parasitic nematodes that infect marine 
animals indeed have minimal genetic organization within their 
populations. A group of cryptic species with distinct geographic and 
definite host ranges make up the Anisakis simplex complex (Pontes et 
al. 2005).

4. Impact of nematodes on wildlife animals

In parasite ecology, one of the most common features is the aggregation 
of parasites within the groups of the host and a number of parasites are 
found in a small percentage of hosts. Individual hosts often differ in 
their visible levels of infection in natural populations. A wide range of 
variables, both internal to the host (host immune system or metabolic 
activities) and related to host-specific "intrinsic" (some characters that 
become specie specific due to acquired or hereditary factors) 
characteristics, contribute to this host heterogeneity in infection. The 
literature study revealed that different parasitic infections, particularly 
nematode infections, have a relationship with the age, sex, and 
reproduction of host animals. These have been studied in various 
wildlife species of deer, sheep, primates, rodents, and birds (Sol et al. 
2003). It has been seen that nematodes mostly affect females compared 
to males but in most of the studies, it was investigated that both have 
equal chances of parasitic susceptibility (Lynsdale et al. 2020). The 
chances of nematode infections in females are more due to their estrous 
cycle phase, during pregnancy when immunity is decreased, and due to 
the lactation phase, when females bear a deficiency of micro and 
macronutrients. The parasitic burden of nematodes affects the overall 
growth and development of the host, hence leading to diseases. 
similarly, young animals are more prone to infections as compared to 
adults. In young animals, the level of immunity is not much to combat 
parasitic infections and if there is any bacterial or viral infection then 
there will be chances of mortality of the host. During heavy infections, 
various chemical drugs have been used but due to their frequent use 
nematodes have developed resistance and their control is very 
necessary. Various control strategies have been used for this purpose 
and some of these are discussed below.

5. Conventional strategies to control parasitic 
nematodes of wildlife

5.1. Environmental and habitat management

Managing habitats to reduce nematode exposure is the main goal of 
environmental management strategies. Changing these factors (habitat 

characteristics, wildlife source, climatic conditions) can interfere with 
the growth and transmission of many wildlife nematodes because they 
have intricate life cycles that call for intermediate hosts or certain 
environmental conditions. For instance, depending on the species, 
nematode larvae might live in plants, water, or soil. Rotational grazing 
is one practice that helps polluted land recover and prevents excessive 
parasite burdens. As many nematode larvae prefer damp conditions, 
eliminating feces and controlling soil moisture levels can work well 
(Bricarello et al. 2023). According to a recent study, wildlife managers 
can lower nematode infection rates by making changes to the 
environments where species exist (Mukherjee et al. 2023). For instance, 
exposure to certain nematodes is reduced when possible intermediate 
hosts, such rodents, are removed from grazing grounds. Certain 
wildlife populations' parasite burden can also be decreased in wooded 
regions by habitat changes like vegetation removal or controlled 
burning (Cable et al. 2017). According to studies, environmental 
management practices reduce the chances of nematodal infection that 
lessens the need for chemical treatments and promotes ecological 
balance (Bouchtaoui et al. 2024).

5.2. Chemical anthelmintic treatments

One of the main strategies for controlling nematode infections in 
wildlife is still chemical management. Adult and larval nematodes are 
the targets of anthelmintics, which include ivermectin and 
benzimidazoles. For instance, in controlled environments, these 
compounds are often used in feeding or through baiting programs for 
wild ungulates. However, there are drawbacks to using these 
medications, most notably the possibility that misuse or incorrect 
dosage can cause parasite populations to become resistant (Gianechini 
2024). Anthelmintic resistance is a growing problem in wildlife 
parasitology, according to scientific investigations due to accumulation 
of chemicals in the body and body become immune to it. To minimize 
misuse of these treatments and to create resistance profiles for various 
nematode species, checking systems have been put in place in a 
number of national parks (Kapinder and Verma 2023). Based on 
diagnostic evaluations, researchers support selective therapy strategies 
in which only animals with severe infections are treated. This keeps the 
animal population at a low infection threshold while lowering the 
chance of resistance (Mukherjee et al. 2023).

5.3. Biological control using predatory fungi

Natural enemies of nematodes, such nematophagous fungus, are used 
in biological control techniques to capture and introduce worm larvae 
in the soil. After adhering to and penetrating the nematode's cuticle, the 
fungus release enzymes that break down the nematode's body. This 
method has proven effective in controlled settings, especially with 
cattle, and new studies are looking into how it may be used to manage 
wildlife (Berhanu et al. 2024). According to field research, adding these 
fungus spores to soil or water sources that animals use will lessen 
nematode infestations. Researchers are looking at using the fungus in 
natural wildlife habitats since it has been effective in lowering 
nematode numbers in livestock fields (Gianechini 2024). Nevertheless, 
there are still difficulties in using these fungi extensively in natural 
settings, and further research is required to comprehend the ecological 
effects on creatures that are not the intended targets (Panayotova-
Pencheva 2024).

5.4. Immunization and genetic resistance

Research on immunization has grown in attention as a strategy to 
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manage parasitic nematodes in animals. Certain nematode vaccines 
have been created for household animals and have the potential to be 
used in wildlife. Vaccines that target Haemonchus contortus in sheep, for 
example, have been shown to drastically lower parasite burdens; 
similar vaccines are currently being investigated for wild ruminants 
(Adduci et al. 2022). The broad application of this technique is, 
however, constrained by practical issues, such as delivering 
vaccinations to wildlife that is free to roam (Rupprecht et al. 2023). For 
captive or semi-wild populations, selective breeding initiatives to 
improve genetic resistance to nematodes offer a workable alternative. 
According to studies, certain species are inherently resistant to 
particular nematodes; populations can become more resilient by 
selectively breeding individuals with these qualities. For instance, 
selective breeding has improved the general health of controlled 
populations of several deer species by lowering nematode loads 
(Panayotova-Pencheva 2024).

5.5. Integrated pest management (IPM) approach

To manage parasites sustainably, an Integrated Pest Management (IPM) 
strategy integrates several control techniques. This approach figures out 
infection levels through diagnostic monitoring and adjusts control 
measures accordingly. By combining biological agents, selective 
chemical treatments, and environmental management, IPM reduces 
dependency on any one technique and aids in keeping parasite 
populations below harmful thresholds (Singh et al. 2023). IPM 
techniques for animal protection include habitat management, 
treatment rotation, and the sporadic use of biological agents. In 
addition to aiding in nematode population management, this strategy 
supports ecological stability and biodiversity. Research has 
demonstrated that IPM can successfully lower the incidence of 
nematodes in animals without resulting in the environmental damage 
linked to heavy pesticide use (Abd-Elgawad 2024).

6. Problems with conventional control methods of 
nematodes

Nematode infestations in agriculture and wildlife can be handled using 
a variety of techniques, each having exclusive hazards and effects on 
the ecosystem. Normally used chemical anthelmintic therapies, such 
ivermectin and benzimidazoles, can become the reason for 
environmental pollution, parasite population resistance, and 
detrimental effects on beneficial microbes and soil biodiversity 
(Navrátilová 2024). Rotational grazing and controlled burning are two 
environmental administration techniques that decline nematode 
habitats but have the potential to upset local ecosystems by affecting 
food webs and biodiversity. Although large-scale application may 
unintentionally harm non-target creatures, biological control, which 
targets nematodes without leaving chemical residues, provides an 
environmentally acceptable option by utilizing nematophagous fungus 
like Duddingtonia flagrans (Jones 2020). These techniques are used in 
Integrated Pest Management (IPM), which takes a more sustainable 
approach by employing focused tactics to lower chemical reliance, 
boost biodiversity, and manage parasite numbers (Deguine et al. 2021). 
For animal conservation initiatives, IPM's intricate coordination in 
natural environments is still difficult.

7. Control of nematodes by medicinal plants

Gastrointestinal (GI) parasite infections continue to be a major global 
health concern, particularly in impoverished nations, despite 

advancements in contemporary human and veterinary treatment. 
Research on alternative treatments for parasitic diseases has grown as a 
result of mounting evidence of these parasites' multidrug resistance 
and the adverse effects of currently available synthetic pharmaceuticals 
(Harhay et al. 2010). In this situation, investigating possible botanical 
antiparasitics that are widely available and reasonably priced might be 
a viable substitute (Ranasinghe et al. 2023). Many ancient medicinal 
systems across the world, including Chinese (Ayurveda), Arabic 
(Unani), and Indian (Ayurvedic), have their roots in plants. These 
ancient medical systems' treatments are grounded on thousands of 
years' worth of empirical research, some of which has been thoroughly 
documented (Patwardhan 2014). Similarly, a nematode known as 
Hemonchus contortus causes severe infections in almost all wildlife 
ruminants and in most of the cases it causes death of the animals. Many 
other nematodes are acknowledged to cause severe loss to wildlife, and 
many control methods are suggested but with their limitations (Emery 
et al. 2016).

8. Use of various plants to treat nematode infections

Various botanicals of therapeutic and medicinal effects have been used 
over the years to treat different infections and diseases in humans and 
animals. They have significant importance in the veterinary field to 
treat bacterial, viral, fungal, and parasitic infections. These medicinal 
values of the plants are due to the presence of various phytochemicals 
in them. Various laboratory examinations have confirmed the presence 
of active chemical components such as polyphenols, saponins, 
monocarboxylic acids, alcohols, flavonoids, terpenes, sesquiterpenes 
etc. However, control of nematodal infections by these phytochemicals 
is eco-friendly and cost saving. Various studies have been carried out to 
check the effect of different plants on the parasites of animals and some 
are listed below in the Table 2.

9. Compounds of plant origin with anthelmintic action

The molecules that have been shown to have nematocidal action are 
members of a broad family of compounds known as secondary 
metabolites, which are derived from the allelopathic interactions that 
occur between plants and their surroundings. As the name implies, 
these compounds are not connected to the main metabolism of plants, 
hence they are not essential to their growth (Santos et al. 1999). They are 
created by alternate cell metabolic processes that use amino acids and 
shikimic acid and are stored in sections like trichomes (epidermal 
appendages) or cellular vacuoles, depending on their chemical makeup, 
frequently in cells and organs far from the site of synthesis (Wink 2008). 
In response to diverse stimuli, plants simultaneously create a variety of 
chemicals. In certain situations, the same stimulus or agent might cause 
the production of many substances (KhokharVoytas et al. 2023). Every 
part of the plant, including the leaves, stems, roots, flowers, and seeds, 
can create secondary metabolites, and the species, stage of 
development, and geographical and climatic factors all influence 
concentration (Luz et al. 2010).

10. Mode of action

Secondary metabolites are ideal candidates for phytotherapeutic 
treatments because they can be linked to defense mechanisms against 
infection and other plants vying for resources, and solar protection. 
Additionally, they can serve to distribute seeds and draw pollinators to 
blooms and to encourage the fixation of nitrogen (Acamovic and 
Brooker 2005). These chemicals can interact with many molecules in 
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mammals, such as hormone receptors, neurotransmitters, and enzymes, 
hence it is uncommon for a cell to location that does not have any active 
secondary metabolites (Rodrigues and Guedes 2006). Secondary 
metabolites include tannins, non-protein amino acids, alkaloids, 
saponins, lignin, glycosides, and other polyphenols. Among these, 
anthelmintic properties are most closely linked to tannins (Rodrigues 
and Guedes 2006). It is generally recognized that some proteins can be 
linked to polyphenol chemicals, particularly tannins. Tannins are 
divided into condensed and hydrolysable categories based on their 
molecular structures. Tropical forage grasses often contain these 
compounds, which are further classified into different groups, 
highlighting the potent anthelmintic properties of procyanidins and 
prodelfinidins (Baxter et al. 1997). The rumen of ruminants is where 
binding of procyanidins and prodelfinidins dietary proteins, 
particularly those high in proline, takes place. In the abomasum, the 
protein/tannin macromolecular complex is broken down due to the 
low pH, and the proteins are broken down and taken up in the 
digestive system. As a result, a diet high in protein strengthens the 
immune system's defense against dangerous substances, including 
nematodes, which is an indirect effect of these metabolites on helminth 

infections (Waterman et al. 2010). Because of their propensity to attach 
to the parasite's proteins, tannins have a direct action that alters the 
cuticle structure and degenerates the intestinal and muscular cells. 
Because of the metabolic changes brought on by the cuticle's structural 
breaking, these injuries may cause the worm to become less motile 
(Brunet et al. 2011). Destructuring the reproductive appendage of 
females might also hinder their ability to deliver eggs, and 
abnormalities in the front end can influence the parasite's feeding. The 
interaction of these metabolites with the L3 larvae's sheath results in 
another impact of tannins, which hinders their ability to penetrate the 
host's gastrointestinal tract by blocking their exsheathment (Hoste et al. 
2012).

11. In vitro trials of the anthelmintic effectiveness of 
phytotherapy substances

Conducting in vitro studies of plant extracts, excluding host and 
environmental factors, and focusing solely on the target parasite and 
candidate plant, is the first stage in the process of confirming 
phytotherapeutic compounds. Numerous plant species have been 
assessed for their anthelmintic properties in this regard (Table 3). Much 
little research has been done on other livestock species, with the vast 
bulk of studies examining the impact of phytotherapeutic compounds 
on parasites concentrating on sheep. This study bias can be attributed 
to two factors: the higher pathogenicity of the parasites and the 
increasing frequency of reports of resistance (Borges and Borges 2016).

12. Limitations in use of plant-based medicines and 
future prospective

The use of plant-based medications to treat and prevent parasitic 
illnesses shows great promise. However, bioavailability can restrict 
their use. The main phytochemicals, such as flavonoids, glycosides, and 
tannins, are poorly soluble in water and lipids, which restricts their 
capacity to pass through biological membranes and causes inadequate 
absorption (Gao and Hu 2010). To get bioactive components, plants are 
also put through a variety of processes, including fermentation, 
distillation, purification, concentration, and extraction. The stability of 
active ingredients is questioned because they are subjected to oxidation 
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Table 2 Different medicinal plants and their target parasites

Plant species Effective plant part Parasites and associated diseases Reference

Acokanthera oppositifolis Leaves Gastrointestinal nematodes (Sanhokwe et al. 2016)

Allium cepa Cloves G.I nematodes (Cheraghipour et al. 2019)

Allium sativum Cloves G.I nematodes (Soliman et al. 2023)

Azadirachta indica Leaves nematode infestation and toxemia (Ranasinghe et al. 2023)

Canabis sativa Resin GIT nematodes (Guerra et al. 2023)

Dature metel Garden fresh fruits GIT nematodes (Chatterjee et al. 2022)

Mentha spicata Entire plant GIT nematodes (El Menyiy et al. 2022)

Musa paradisiaca Leaves GIT nematodes (Oguntibeju 2019)

Nicotiana tabacum Leaves Ectoparasites and GIT nematodes (Nouri et al. 2016)

Piper nigrum Seeds IDyspepsia, diarrhea, flatulence, and poisoning (Saad et al. 2022)

Senna italica Entire plant G.I parasite and ectoparasites (Yongwa et al. 2020)

Trachyspermum ammi Seeds Ectoparasites and endoparasites (Abbas et al. 2019)

Trianthema portulacastrum Entire plant G.I parasite (Hussain et al. 2011)

Veronia anthelmintic seeds G.I parasite (Dogra et al. 2020)

Fig. 1: Schematic representation of the mechanism of action and 
different pharmacological targets of plant extracts/compounds



and hydrolysis during these procedures (Rangari 2009). Additionally, 
plant products frequently deteriorate, especially when stored, which 
results in the loss of active ingredients and the creation of inactive 
metabolites (Thakur et al. 2011). Concerns about the safety of plant-
based medications are becoming more prevalent as their use grows 
worldwide. Despite their widespread use and enticing potential, many 
plants have not yet been confirmed safe or poisonous. This results in a 
lack of awareness regarding their possible side effects and makes it 
challenging to determine the safest and most efficient treatments (Gao 
and Hu 2010).

The research discussed here supports more research into plants or 
plant derivatives as sources of innovative treatments for nematodal 
parasite infections. The studies do, however, also highlight a number of 
areas that need more research (Liu 2020). Future study is encouraged by 
the majority of the studies in literature to find the ideal dosage for 
maximizing the efficiency of the plants under investigation. It is also 

crucial to translate the findings of in vitro research into in vivo 
experiments. Furthermore, to prove the new compounds' safety and 
effectiveness, clinical trials involving successful animal experiments 
using either the compounds alone or in combination with well-
established antiparasitic medications are necessary.

13. Conclusion

In order to find new medications and lead compounds, this study 
focused on research that assessed plants and plant products as 
nematode antiparasitic medication. Although there are few studies on 
some species of nematodes affecting animals, plants or their isolates 
have been tested against all prevalent parasites. Given the 
circumstances, the outcomes of this review offer insightful data about 
genetic structures in Table 1 that can guide the development of future 
research concerning procedures, dosages, and experimental setups. 
According to this review, nematode parasites are significantly affected 
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Table 3 Different plant species and their target parasitic life stage

Plant species Target parasite Life stage of parasite Reference

Acacia baileyana Cyathostominae sp. Larvae (Payne et al. 2013)

A. holorecicea Cooperi sp. & Haemonchus contorus L3 larvae (Moreno et al. 2010)

A. meanrsnii H. contorus Eggs and larvae (Yoshihara et al. 2014)

A. Melanoxylon Cyathostominae sp. Larvae (Payne et al. 2013)

A. podalyrrifolia Cyathostominae sp. Larvae (Waterman et al. 2010)

A. polycacantra Caenorhabiditis elegans Juveniles (Payne et al. 2013)

A. salicina
Cooperi asp. and 
H. placei L3 larvae (Moreno et al. 2010)

Alectryon oleifolius Cyathostominae sp. Larvae (Elghandour et al. 2023)

Allocasuarina torulosa H. placei L3 larvae (Riley 2019)

Anogejssus lelocarpus C. elegans Juveniles (Maroyi 2017)

Artemisia annua Bunostomum sp. Eggs and larvae (Ekanem and Brisibe 2010)

Bridelia micranta C. elegans Juveniles (Kevin et al. 2023)

B. micranta C. elegans Juveniles (Waterman et al. 2010)

Cambretum nigricans C. elegans Juveniles (Ignagli et al. 2024)

Casuarina cunninghamiana H. placei L3 larvae (Moreno et al. 2010)

Citrus sinesis H. contorus Eggs and larvae (Githiori et al. 2002)

Duboisia hopwood Cyathostominae sp. Larvae (Payne et al. 2013)

Eucalyptus gomphocephala Cyathostominae sp. Larvae (Ishaq 2014)

Flemingia vestita Trematode and Cestoda Adults (Tandon et al. 1997)

Grewia bicolor C. elegans Juveniles (Waterman et al. 2010)

Jatropha curcas H. contorus Eggs and larvae (Monteiro et al. 2011)

Markhamia obtusifolia Trichostrongylus colubriformis Eggs (Nchu et al. 2011)

Melaleuca quinquenervia H. contorus Eggs and larvae (Githiori et al. 2002)

Melia azedarach H. contorus Eggs and larvae (Kamaraj et al. 2010)

Petophorum africanum T. colubriformis Eggs and L1, L2 and L3 larvae (Bizimenyera et al. 2006)

Phillyrea latifolia T. circuncincta Eggs and larvae (Azaizeh et al. 2013)

Pistacia lentiscus Teladorsagia circuncincta Larvae (Azaizeh et al. 2013)

Santalum spicatum Cyathostominae sp. Larvae (Payne et al. 2013)

Strychnous spinosa C. elegans Juveniles (Waterman et al. 2010)

Tabernaemontana citrifolia H. contorus Eggs, larvae, and adults (Marie-Magdeleine et al. 2010)

Ziziphus mucronate C. elegans Juveniles (Waterman et al. 2010)



by plants and chemicals resulting from plants both in vitro and in vivo. 
Broad-spectrum antiparasitic medications and many plant extracts have 
shown comparable benefits. Although this element needs to be 
examined, the traditional use of plants offers vital evidence for finding 
and creating synergistic medications.
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