
1. Introduction

The economy of any nation is strengthened by agricultural and 
livestock production, which is essential for meeting both the needs of 
living and the need for raw materials by industry. Higher food output 
is necessary due to the ongoing growth of the human population, 
which is expected to reach 10 billion by 2050. The need for more 
agricultural production can be met by increasing crop productivity 
because the cultivated area is constrained. The main source of food and 
nourishment for domestic animals and humans comes from agriculture, 
however, by 2050, it is expected that food demand will have increased 
by 70% (Abdel-Aziz et al. 2019). While high yields in agriculture are 
crucial for sustainability, they also have detrimental effects on the 
environment due to water use, ecosystem degradation, and the 
applications of agrochemicals on the soil (Shekhar et al. 2021). Among 
the tactics of sustainable agriculture techniques are the rotation of 
crops, integrated pest management systems, mechanical or biological 
control of weeds, and pesticide reduction (Kannan et al. 2023). 
However, in addition to climate change, plant diseases, weeds, pests, 
poor soil health, natural disasters, and decreased nutrient availability 
all contribute to a large loss of worldwide crop production under 
current farming systems (Mittal et al. 2020).

By feeding directly on plants and damaging essential components 
like the leaves, stems, and fruit, insect pests significantly lower crop 
output. Damage from their eating can take several forms, ranging from 
leaf defoliation and stunted development to total crop destruction. 
Locusts, aphids, moth larvae, and beetles are some of the most 
destructive pests that may quickly decimate enormous agricultural 
areas (Sharma et al. 2017). Staple crops like maize and rice are severely 
harmed by the Fall Armyworm (Spodoptera frugiperda), which has 
advanced over Africa, Asia, and Latin America. Research indicates that 
African farmers lose over $13 billion a year due to this bug alone 
(Mendesil et al. 2023). Insect pests have a stunning cumulative impact 
on agriculture worldwide. According to studies, insects account for 20–
40% of all losses in agriculture each year, with severe infestations 
causing even more harm in some areas (Tonnag et al. 2022).

By employing a controlled release technique with active 
compounds that are nanoscale encapsulated, new technologies can 
lessen the negative impacts of pesticides (de Albuquerque et al. 2021). 
The active ingredients in nano pesticides thus can be uniquely 
formulated at the nanoscale to enhance delivery and efficacy, 
improving dispersion stability, producing formulations with controlled 
or gradual release, and offering more control in field applications 
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The necessity for more agricultural production can be fulfilled by increasing crop productivity 
because the cultivated area is constrained. The main source of food and nutrients for domestic 
animals and humans comes directly or indirectly from agriculture. However, along with climate 
change, plant diseases, pests, poor soil health, weeds, natural disasters, and reduced nutrient 
availability, all contribute to a large loss of worldwide crop production under current farming 
practices. According to the latest studies, insects account for almost 20-40% of all yield losses in 
agriculture each year, with acute infestations causing even more harm in some areas. One of the 
main concerns for international food security is the financial burden of controlling these pests, 
both in terms of direct output losses and the expenses related to pest control procedures. 
Application of pesticides on the farm poses a variety of challenges for farmers, who must decide 
which pesticides to use for a given pest as well as when and how to apply them. Nanotechnology 
has been widely used in agriculture to boost the production of crops through a variety of methods, 
including control of pests, seed treatment, enhancement of the germination process, nutrient 
balance, and improved fertilizer delivery. In this review, the role of metallic nanoparticles (MNPs) 
against hazardous insects (pests) in their control and the mechanism of actions of MNPs have been 
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(Grillo et al. 2021). Numerous advantages of nano pesticides include 
increased potency and durability as well as fewer active ingredients, 
which opens up a variety of efficient ways to lessen the ecological 
damage that chemical pesticides do (Awad et al. 2022). This review 
article aims to explore the potential of metallic nanoparticles (MNPs) as 
effective alternatives to control hazardous insects affecting both plants 
and animals. Additionally, this review also addresses the challenges, 
and safety measures for the application of MNPs in integrated pest 
management strategies.

2. Global food security

One of the biggest concerns for international food stability is the 
financial burden of controlling these pests, both in terms of direct 
output losses and the expenses related to pest control procedures 
(Skendžić et al. 2021). Impulsive crises in the agriculture sector 
frequently impact food stability. The majority of these nutritional crises 
are caused by significant plant disease epidemics, with arthropod pests 
serving as the major causative agents (Jarmul et al. 2020). Because they 
consume leaves, stems, fruits, and roots, plant insects directly harm 
crops. Lower yields, stunted development, and decreased 
photosynthesis are the consequent outcomes (KhokharVoytas et al. 
2023). In many regions of the world, staple crops including wheat, 
maize, rice, and cotton are notoriously destroyed by major pests like 
aphids, whiteflies, and different beetle species (Hajjar et al. 2023). The 
financial toll of pest infestations is enormous; estimates indicate that 
pest infestations by insects account for 10–15% of all agricultural losses 
worldwide each year, or billions of dollars (Oyediran 2023). For 
example, a significant insect pest of cotton and a number of other crops 
is the cotton bollworm, Helicoverpa armigera. Significant economic losses 
result from the severe damage caused by its larval stages 
(Bessembayeva et al. 2024). It has been estimated that H. armigera causes 
cotton losses in India of more than $500 million a year (Belagalla et al. 
2024). Due to its destructive nature, farmers are now more dependent 
on chemical-based pesticides, which increases production costs and 
presents environmental risks. Many plant insects not only cause direct 
harm but also operate as carriers of bacterial, fungal, and viral 
infections that have a major effect on agricultural output. Aphids, for 
instance, are carriers of over 100 plant viruses, such as the commercially 
significant barley yellow dwarf virus (BYDV), which lowers cereal crop 
yields globally (Khan et al. 2023a). Whiteflies spread viruses like the 
cassava mosaic virus and the tomato yellow leaf curl virus (TYLCV), 
which cause large crop losses in Asia and Africa (Soumia et al. 2021). 
The financial costs brought on by these illnesses can greatly outweigh 
the harm that direct feeding causes (Tatineni and Hein 2023).

Food security is directly threatened by the rising incidence of 
plant-insect pests, especially in areas where famine and malnutrition 
already exist. Because insects can destroy staple crops, low-income 
populations may experience food shortages, price increases, and 
limited access to food. An estimated 821 million people experience food 
insecurity globally, according to the United Nations Food and 
Agriculture Organization (FAO), and one of the main causes of this 
problem is the destruction done by plant insect pests (Abdolkhani and 
Mohammadi 2023). By changing both the distribution and the actions of 
pest species, climate change is making plant insects an even greater 
hazard. Increased CO2 altered precipitation patterns, and rising 
temperatures can all make insect outbreaks more likely. Insects can 
spread out geographically, reproduce more quickly, and endure winters 
that would typically restrict their numbers (Kaur et al. 2023).

3. Traditional techniques for insect pest management

Currently, over 450 active ingredients are authorized for use in 
pesticides, and over 333,000 tons are marketed annually throughout the 
EU (as of 2021) (Schleiffer and Speiser 2022). All things considered, the 
United States consumed the most pesticides in the world in 2020, using 
about 407.8 thousand metric tons, followed by Brazil, which consumed 
377.2 thousand metric tons in that year. In 2020, 2.66 million metric tons 
of pesticides were consumed worldwide. The amount of pesticides 
used in farming operations increased by more than 50% worldwide 
between 1990 and 2010. Nonetheless, consumption has stayed mostly 
constant since then, declining a little from 2.68 million metric tons in 
2011 to 2.66 million metric tons in 2020 (Daraban et al. 2023; 
Yessenbayeva et al. 2024). Rachel Carson made the public aware of the 
problems that might arise from the careless use of pesticides in 1962 
with the publication of her book Silent Spring. This book raised serious 
worries about the effects of pesticides on the environment and human 
health (Hellou et al. 2013).

The majority of national and intergovernmental bodies firmly 
believe that the next officially recognized framework for evaluating 
crop protection will be Integrated Pest Management (IPM). As a result, 
all EU farmers have been required to follow the general guidelines of 
Integrated Pest Management (IPM) since 2014. IPM is defined in the 
majority of guidance publications as a methodical and comprehensive 
"approach" or "strategy" for managing plant pests while minimizing the 
use of synthetic pesticide (Nadi et al. 2024; Pazla et al. 2024). The goal of 
IPM is to efficiently manage pests while preventing their populations 
from reaching economically detrimental levels, rather than eradicating 
them. By putting this plan into practice, farmers, consumers, and the 
environment will be exposed to less toxicity, and the damage caused by 
pesticide-resistant pests will be reduced (Stenberg 2017). Depending on 
their intended application, pesticides are also known as insecticides, 
herbicides, fungicides, rodent killers, molluscicides, nematicides, and 
acaricides (Daraban et al. 2023). Benzoic acids, triazines, phenoxy acetic 
acid derivatives, carbamates, organochlorides, pyrethrins and 
pyrethroids, organophosphorus, dipyridyl derivatives, glycine 
derivatives, and dithiocarbonates are among the pesticides that can be 
categorized based on their chemical structure (Bortoli and Coumoul 
2018) as illustrated in Fig. 1.
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4. Pesticide toxicity and their effects on the 
environment, animals, and human health

Pesticides, though crucial for managing pests, pose significant risks to 
animal health. Animals can be exposed through inhalation, skin 
contact, or ingestion, which may result in symptoms like drooling, skin 
rashes, vomiting, diarrhea, or, in extreme situations, seizures and severe 
lethargy (Khan et al. 2023a). Certain types, such as organophosphates, 
are espec ia l ly harmful as they disrupt the ac t iv i ty o f 
acetylcholinesterase, a vital enzyme for nerve functioning, leading to 
neurological issues. Research indicates that even minimal exposure can 
lead to reproductive challenges and developmental problems in 
offspring. Moreover, pesticides such as cypermethrin have been 
associated with adverse effects on the male reproductive system in 
laboratory animals, including reduced testosterone levels, changes in 
sperm production, and structural damage to reproductive tissues 
(Yadav et al. 2024). Pesticides can also indirectly damage ecosystems by 
affecting animal behaviors crucial for survival. For example, exposure 
to chlorpyrifos in tadpoles has been shown to interfere with survival 
instincts, potentially causing population reductions (Poliserpi and 
Brodeur 2023).

Employing pesticides on the farm presents a variety of challenges 
for farmers, who must decide which pesticides to use for a given pest/
s, as well as when and how to apply them. Overuse of pesticides 
typically results in higher expenses and lower earnings for farmers in 
addition to the risk to the ecosystem and/or public health. Beneficial 
creatures and biodiversity can flourish when minimal pesticide 
applications and lower amounts of active chemicals (pounds or 
kilograms) are used, reducing the strain on non-target organisms 
(Daraban et al. 2023). This is why, although it is the most widely used 
metric, "pounds/kilograms of active ingredient applied" is not a 
comprehensive measure of changes in pesticide use. This measure does 
not take into consideration variations in target pests, application 
techniques, or pesticide toxicity (Benbrook and Benbrook 2021). 
Eighteen variables in the pesticide usage Minimum Dataset (MDS), 
created by the Heartland Health Research Alliance (HHRA), combine to 
provide fundamental information about shifts in pesticide use 
(Daraban et al. 2023). Although application rates have generally 
declined, the quantity applied has stayed largely constant. Certain 
pesticides, for instance, are administered at high rates/acre, and 
sometimes even over 100 pounds, while other pesticides that serve a 
similar purpose, or occasionally even better, may be treated at much 
lower rates per acre (Daraban et al. 2023).

Despite their advantages in agriculture, pesticides have been 
shown to be harmful to both humans and the environment. Many of 
these high-toxicity substances are prone to bioaccumulation and remain 
persistent in the environment. However, according to estimates, less 
than 1% of the entire amount of pesticides used to eradicate weeds and 
other pests actually reach the intended pests (Barzman et al. 2015). 
Pesticides enter the environment during the treatment formulation and 
application stages. Various spraying procedures may be used 
depending on the composition type, intended pest, and application 
schedule. Boom sprayers, burrow sprayers, and aerial applications are 
commonly used to apply liquid sprays to crops. Pesticides can be 
sprayed on the surface of the ground, injected as fumigants, or 
administered as granules, depending on the kind of soil. Eventually, the 
pesticides will be incorporated into the topsoil. Furthermore, herbicides 
are frequently applied to seeds prior to seeding (Tudi et al. 2021). 

Pesticides may reach surface water bodies, volatilize into the 
surrounding environment, or enter non-target organisms by ingestion. 
Following treatment, they are likely to be consumed by target 
organisms, decompose, or move to groundwater. The physical and 
chemical characteristics of pesticides, the soil, geographical conditions, 
and management techniques all directly influence their behavior and 
destiny (Rasool et al. 2022). A significant amount of active pesticide 
ingredients frequently persists in the soil, where they undergo 
biochemical changes that affect the soil's microbial and enzymatic 
activity. It is challenging to evaluate enzymatic and microbiological 
reactions after pesticide application because of the structural diversity 
and variety of breakdown pathways of synthetic pesticides (Wołejko et 
al. 2020).

5. Effect of pests on feed and fodder of Animals

Pests severely impact the quality and availability of feed and fodder 
crops for livestock impacting nutrition, productivity, and economic 
value of farm animals. Insect pests, weeds, and many fungal pathogens 
disrupt various stages of fodder crops which ultimately results in the 
loss of net yield, nutrition depletion, and contamination (Belehegn et al.  
2020). For instance, locust swarms (Schistocerca gregaria) devastate 
pastures and fodder crops in semi-arid regions, consuming up to 80–
100% of vegetation during outbreaks (Ayana 2023). A 2020 FAO report 
highlighted that locust invasions in East Africa (Kenya, Ethiopia, 
Somalia) destroyed over 1.8 million hectares of grazing land, slashing 
fodder availability by 70–90% in affected areas and threatening the 
livelihoods of 20 million pastoralists (Simpkin et al. 2020). Similarly, the 
fall army worm (Spodoptera frugiperda), introduced to Africa in 2016, has 
caused 40–60% yield losses in maize which is a critical fodder crop 
across 28 countries, including Zambia and Malawi, where smallholder 
farmers rely on maize stover for cattle feed (Otim et al. 2021; Haryati et 
al. 2025). Stem borers (Busseola fusca and Chilo partellus) reduce sorghum 
and millet yields by 20-40% in sub-Saharan Africa (Nigeria, Sudan), 
directly affecting fodder reserves during dry seasons (Binjamin et al. 
2024).

Invasive weeds like  Parthenium hysterophorus  (congress grass) 
outcompete native fodder species, reducing biomass by 50–70% in 
South Asia (India, Pakistan) (Shabbir et al. 2024). A 2019 study in Crop 
Protection noted that Parthenium  infestations in Punjab, India, lowered 
green fodder production by 1.2–1.8 tons/hectare annually, forcing 
farmers to rely on expensive alternatives (Mashandete et al. 2010). 
Fungal pathogens, such as  Aspergillus flavus, produce aflatoxins in 
stored fodder, contaminating 30-50% of silage in tropical regions 
(Brazil, Southeast Asia), Aflatoxin-contaminated feed not only reduces 
palatability but also causes liver damage and immunosuppression in 
livestock, exacerbating losses (Jiang et al. 2021). Termites (Odontotermes 
spp.) damage dry fodder stores in arid zones, destroying 30-50% of 
stored crop residues in Rajasthan, India (Kumar 2018).

Climate change exacerbates pest-related losses by expanding pest 
habitats. For example, warmer temperatures have enabled the Mexican 
bean beetle (Epilachna varivestis) to infest soybean fodder in Central 
Mexico, causing 40–70% defoliation (Munaiz 2018). Aphids (Aphis 
craccivora) and whiteflies (Bemisia tabaci) transmit viral diseases in 
leguminous fodder crops like alfalfa and cowpea, reducing yields by 
30-60% in the U.S. Midwest and Australia’s Murray-Darling Basin (Nair 
et al. 2018). A research study found that aphid infestations in Australian 
lucerne fields lowered crude protein content by 15–25%, compromising 
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feed quality (Lan et al. 2024). The economic ramifications were severe in 
East Africa, where locust-related fodder shortages increased feed costs 
by 300-400% during the 2019-2021 outbreaks, forcing farmers to sell 
l i v e s t o c k a t r e d u c e d p r i c e s ( A h m a d e t a l . 2 0 2 2 ) . I n 
Brazil, Spodoptera infestations in maize fodder led to a 12-15% decline in 
dairy production (Mishra et al. 2024). Integrated pest management 
(IPM) strategies, such as biopesticides and resistant fodder varieties 
(e.g., ICAR’s Parthenium-tolerant sorghum), have reduced losses by 30–
50% in pilot regions (Idrees et al. 2021). However, limited adoption due 
to cost and knowledge gaps persists, particularly in low-income 
regions. Addressing these challenges requires region-specific pest 
surveillance, climate-resilient fodder systems, and policies supporting 
affordable pest control to safeguard global feed security (Heydari et al. 
2021).

6. Nanotechnology in agriculture

Precision farming uses nanotechnology to increase crop productivity 
and regulate target activity according to environmental variables 
(Chhipa 2017; Mustafa et al. 2024). Nanotechnology has been widely 
used in agriculture to boost crop yields through a variety of methods, 
including control of pests, seed treatment, enhancement of germination 
process, nutrient balancing, improved fertilizer delivery process, gene 
transfer, identification and elimination of toxic agrochemicals, nano-
sensors for pathogen detection, and nano filters for water purification 
(Bahrulolum et al. 2021). Fig. 2 illustrates several uses of 
nanotechnology in crop protection and agriculture. The extensive 
application of nanotechnology in agriculture and livestock is a result of 
the special properties of nanomaterials, including their small size (1 
to100 nm), huge surface area, enhanced permeability, thermal stability, 
dispersion, and biodegradability (Athanassiou et al. 2018; Azam et al. 
2023). Because of their unique characteristics, nanomaterials are 
considered to be efficient carriers for stabilizing fertilizers and 
insecticides. They are also useful for facilitating controlled nutrient 
transfer and improving crop protection (Bahrulolum et al. 2021). Due to 
their property of being absorbed quickly and precise nutrient 
distribution in plants, nano fertilizers are superior to conventional 
fertilizers (Abdelmigid et al. 2022; Silvera-peblo et al. 2024). It increases 

plant roots' capacity to absorb nutrients, which improves crop yield and 
the process of photosynthesis (Zulfiqar et al. 2019). Numerous studies 
have shown the significance of NPs as nutrient transporters in crop 
development. Cota-Ruiz et al. (2020) examined copper NPs that are 
used as fertilizers for alfalfa (Medicago sativa) plants and found that 
nano-copper improved the micronutrient value and physiology of the 
plants. It was discovered that using zinc oxide NPs as a nano fertilizer 
improved the yield and nutritional value of soybeans (Glycine max) 
cultivated on soil lacking zinc (Yusefi-Tanha et al. 2020; Naeem et al. 
2023). In recent findings application of silver NPs (Ag NPs) was carried 
out to check the acaricidal activity against Hyalomma dromedarii and 
efficacy was checked using Adult immersion tests (AITs) and results 
showed that Ag NPs significantly control ticks (Abdel-Ghany et al. 
2022). In some other studies, the use of titanium dioxide nanoparticles 
(TiO2 NPs) to check the larvicidal activity against Rhipicephalus 
microplus, H. anatolicum, and Haemaphysalis bispinosa were investigated 
and results showed that NPs that were of 30 nm in size exhibited 
significant larvicidal activity by damaging their cellular structure 
(Rajakumar et al. 2015).

7. Criteria for choosing nanoparticles

Generally speaking, important characteristics like affordability, 
nontoxicity, biocompatibility, and biodegradability are taken into 
consideration when choosing materials for agricultural uses (Pandey 
2018; Khan et al., 2023e). Varied nanocarriers are needed because of 
their varied targets, which include viruses, fungi, weeds, crops, and 
pest species. This implies that the targets' physiological and 
physicochemical needs must be met by the nanocarriers (Li et al. 2021). 
Crop quality and production, economic performance, environmental 
compatibility, nutrient loading capacity, nutrient release rate, and 
nutrient usage efficiency are the main considerations when selecting 
nanostructured materials for fertilizer delivery (Guo et al. 2018). 
Because of the intricate structure of the plant cell wall, choosing 
penetrating nanocarriers requires careful consideration of factors like 
size, shape, and surface properties (Li et al. 2021). For example, chitosan 
nanoparticle-controlled release matrices exhibiting antibacterial 
properties are thought to be novel approaches to microbial control 
(Mujtaba et al. 2020). Particles made of metals or metal compounds 
having at least a dimension between 1 and 100 nanometers are known 
as metallic NPs. Due to their unique biological, chemical, and physical 
properties, NPs have gained much attention in modern times 
(Masarovicova and Králová 2013; Asghar et al. 2024). Their small size, 
high surface area-to-volume ratio, and quantum effects make them 
extremely adaptable for various applications in fields such as 
electronics, environmental remediation, medicine, and catalysis (Khan 
et al., 2023b; Ryandini et al. 2024). Despite their apparent benefits in the 
biomedical field, MNPs nevertheless have some drawbacks, including 
unequal bio-distribution, a tendency to silt and aggregate, clearance by 
macrophages, and undesired interactions with biologically viable 
tissues (Canaparo et al. 2020). Researchers have worked to overcome 
these bottlenecks by surface-functionalizing or conjugating them with 
natural polymers or molecules to make them stable and covert in 
physiological media, reducing their negative effects and increasing 
their effectiveness and biosafety (Hassan et al. 2021).

Reducing or capping agents are usually needed to synthesize or 
stabilize MNPs by chemical techniques, which have been used 
extensively. One of the most popular chemical processes for creating 
MNPs is photochemical synthesis, followed by Sono-chemical and 
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microwave processing. But because they are poisonous, these 
substances are extremely dangerous for both environmental and 
medical safety. Since bacteria, actinomycetes, viruses, fungi, yeast, or 
plants can use biosynthetic pathways, this has encouraged the 
development of green techniques for MNP production (Ehsan et al. 
2022). Interestingly, a variety of techniques can be applied to certain 

synthesis needs (mostly for the synthesis of bimetallic MNPs). These 
methods need to be adjusted in order to synthesize MNPs with a 
variety of characteristics, and each has pros and cons of its own (Srinoi 
et al. 2018).

8. Types of metallic NPs used in pest control
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Table 1 Thorough analysis of the benefits and drawbacks of the most popular synthesis techniques of metallic nanoparticles

Method of 
synthesis

Examples of 
synthesised MNPs Advantages Disadvantages Reference

Ball milling CuO NPs
TiO2 NPs
Ag NPs
ZnO NPs

1.Well controlled
2.Simple
3.Scalable

1.Require high energy
2.Milling media affects the final 
purity and microstructure of metallic 
nanoparticles
3.Very time consuming

(Sidiqi et al. 
2024)

Mechano-
Chemical 
method

Ag NPs
Fe2O3 NPs

1.Fast and very simple
2.Very efficient
3.Product of tunable morphology

1.Take a lot of time
2.Not applicable for all NPs
3.Only for the NPs less than 20 nm in 
size

(Khayati et al. 
2013)

Laser 
irradiation 
method

ZnO NPs
TiO2 NPs
Fe3O4 NPs
Ag NPs
Au NPs
CuO NPs

1.No energy waste in the form of 
heat
2.Takes only one step for the 
synthesis
3.Product of tunable morphology
4.Simple and effective
5.Yield high amount of NPs

1.Its probe blocks the pathway and 
obstructs the energy of the laser by 
the high amount of formation of NPs
2.It reduces further rate of ablation

(Iravani et al. 
2014; Iqbal et al. 
2024)

In situ 
reduction

Au NPs 1.Formation of NPs in an easy way 
by simple physical and chemical 
methods
2.Needs no extra linker

1.High impurity risk and cause 
toxicity
2.High cost and poor reducing 
capability
3.  It makes controlling overall 
properties of synthesized NPs 
difficult

(Chen et al. 2020; 
Altaf et al. 2024)

Bath deposition 
by chemical

Palladium Sulphide NPs
Cd Sulphide NPs
Fe NPs
ZnO2 NPs

1.No need of any pressure or 
temperature
2.Very simple and eco-friendly
3.Product of tunable morphology
4.Faster compared to hydrothermal 
method

1.High wastage of precursor solution
2.Precursor must be clean in this 
method

(Rosli et al. 2023)

Co-
precipitation

Fe3O4 NPs
Fe-doped CeO2 NPs

1.High throughput
2.Scalability
3.High throughput

1.Difficulty in handling
2.Possibility of surface oxidation

(Sodipo et al. 
2023)

Chemical 
precipitation

ZnO NPs doped with Ag
CuO NPs
CdO NPs doped with Ag

1.Scalability
2.High speed

1.Difficult in handling the structural 
attributes

(Sagadevan et al. 
2017)

Sol-gel method ZnO2 NPs
TiO2 NPs

1.Scalability 1.Difficulty of producing porous 
films

(Hasnidawani et 
al. 2016)

Hydrothermal 
method

Fe NPs
ZnO2 NPs

1.High efficiency
2.Narrow size
3.Product distribution
4.Morphology can be controlled very 
easily even at large scale

1.Need of high temperature
2.Time consuming
3.Probable degradation of thermos 
labile drugs

(Shibeshi et al. 
2022)

Electro-
deposition

Ni NPs
TiO2 NPs
Ag NPs
Au NPs

1.Fast and robust
2.Cost-effective
3.Product of tunable morphology

1.Not applicable for production on a 
large scale
2.Having multiple steps and time 
consuming

(Mohanty 2011)

Microemulsion 
synthesis

Organometallic in 
addition to unusual 
nanostructured 
inorganic materials like 
CuS, Mo(CO)6, Fe(CO)5, 
Co(CO)3NO

1.Having control over the size and 
many other physical aspects of the 
NPs
2.No need of reduce agents

1.Need of surfactants (Munoz-Flores et 
al. 2011)
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MNPs have shown great promise as a pest management tool because of 
their special physicochemical characteristics. Because of their ability to 
kill agricultural pests, several kinds of metallic nanoparticles, including 
copper (Cu NPs), zinc oxide (ZnO NPs), silver (Ag NPs), and titanium 
dioxide (TiO₂ NPs), are frequently used (Tortella et al. 2021). The strong 
antibacterial qualities of silver nanoparticles, which efficiently combat 
bacteria, fungi, and insect pests, have led to extensive research into 
these materials. Strong antibacterial and pesticidal qualities are also 
displayed by ZnO and Cu nanoparticles, which cause cellular 
membrane disruption and the production of reactive oxygen species, 
which causes oxidative stress in pests (Jafir et al. 2023). Furthermore, 
TiO₂ nanoparticles, which are typically employed in photocatalysis, 
have the ability to break down harmful substances that pests create 
(Bihal et al. 2023). The eco-friendliness and target-specificity of these 
NPs enable them to effectively control a wide range of pests while 
reducing the need for traditional chemical pesticides, which frequently 
have negative environmental effects. In order to ensure sustainable 
agricultural practices and improve crop protection, ongoing research 
attempts to maximize the utilization of MNPs (Lan et al. 2024).

8.1 Silver NPs (Ag NPs)

The strong biocidal activity of Ag NPs is well known, and there are 
multiple ways in which they affect insects. Ag NPs cause toxicity 
primarily by entering the insect cells through its cuticle and interfering 
with regular physiological functions. Once inside, Ag NPs have the 
ability to bind with DNA and proteins within cells, causing oxidative 
stress (Nie et al. 2023). Reactive oxygen species (ROS) are produced as a 
result of this stress, which damages proteins, nucleic acids, and cell 
membranes, leading to cellular malfunction and eventually cell death 
(Acar and Özgül 2023). Another explanation is that the insect defense 
systems are weakened when the action of its enzymes, especially those 
involved in detoxification, is disrupted. Ag NPs are also known to 
prevent breeding and feeding, which lowers pest populations even 
further. Furthermore, the NPs may interfere with the ion channels in 
insect cells, altering the signals of the nervous system and resulting in 
paralysis and death (Moraes-de-Souza et al. 2024). One study 
investigated the larvicidal activity of silver and silver chloride NPs 
against R. microplus larvae and these NPs were synthesized using 
Mimosa pudcica extract and biological assay revealed that a 
concentration of 8.98 mg/mL showed maximum larvicidal potential 
(Benelli et al. 2017)

8.2 Efficacy against specific insect pests

The use of NPs designed through various techniques showed 
promising results against insect pests of plants and animals. Some key 
NPs that showed better results against targeted insect pests are 
summarized. Silver NP has been very successful in combating 
agricultural pests that seriously harm crops, such as Plutella xylostella, 
Helicoverpa armigera, and Spodoptera litura (Razzaq et al. 2023). 
According to some recent research when Ag NPs are used as a pest 
management approach they significantly lower their survival rate by 
hampering their growth and decreasing their reproductive potential. 
The potential of Ag NPs in vector control is demonstrated by the fact 
that, for example, exposure to Ag NPs increased mortality in Aedes 
aegypti, the mosquito that spreads diseases like dengue and Zika (Khan 
et al. 2023d; Ali et al. 2024). Ag NP treatments have also been successful 
in controlling Sitophilus oryzae, a significant pest of stored grains, by 
lowering adult emergence and feeding damage. The diverse 
mechanisms of action of Ag NPs are responsible for their broad-

spectrum effectiveness against a variety of insect species, and their 
environmentally favorable characteristics make them a desirable 
substitute for traditional chemical insecticides (Khan et al. 2023c).

8.3 Zinc Oxide NPs (ZnO NPs)

Zinc oxide NPs gained attention as pest control agents due to their 
insecticidal potential and being eco-friendly. These NPs showed 
insecticidal mechanisms by the production of reactive oxygen species 
which induce oxidative stress in the cells of insect pests (Gauba et al. 
2023). Insects eventually die as a result of cellular malfunction brought 
on by this oxidative stress, which also destroys proteins, lipids, and 
nucleic acids. ZnO NPs can also interfere with the insect's ability to 
absorb nutrients, causing starvation, stunted growth, and decreased 
reproduction (Wani et al. 2023). ZnO NPs are excellent for application 
in both field crops and stored products since studies have shown that 
they are very efficient against a variety of insect pests, such as Sitophilus 
oryzae, Helicoverpa armigera, and Aphis gossypii (Jafir et al. 2023). The 
effectiveness of these NPs increased by the strong interaction of NPs 
with insect tissues due to their small size and large surface area. To 
prevent insect infestations, ZnO NPs can be incorporated into coatings 
for grains that have been kept or sprayed on leaves (Abd El-Latef et al. 
2023). ZnO NPs are a flexible tool in agricultural pest management 
because of their UV-blocking qualities, which also serve as an insect 
deterrent and give crops more protection from UV radiation (Mondéjar-
López et al. 2024).

Recent findings highlighted the effectiveness of ZnO NPs in 
combating ticks and lice, presenting a sustainable alternative for 
managing these pests in animals. For example, ZnO NPs synthesized 
using Momordica charantia leaf extract have demonstrated notable 
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Fig. 3: Action mechanism of MNP against insects a. metal ions 
released from NPs alter the cell membrane b. MNPs disturb redox 
balance c. phytochemicals in the raw material onset a complex 
reaction d. MNPs can damage the genetic material and cause toxicity 
e. MNPs inactivate many enzymes by detoxifying them or by the 
production of antioxidant f. MNPs clog the midgut and respiratory 
pathway of insect g. MNPs may damage the insect cuticle surface 
and reduce their motility



toxicity levels, with LC₅₀ values recorded at 6.87 mg/L for R. microplus 
larvae (commonly known as cattle tick) and 14.38 mg/L for adult 
Pediculus humanus capitis (head lice) (Doğaroğlu et al. 2024). 
Additionally, ZnO NPs produced through wet chemical synthesis 
methods achieved complete mortality of R. microplus larvae within 12 
hours and P. humanus capitis within 6 hours under specified 
concentrations. These NPs interfere with vital physiological processes 
in parasites, ultimately causing their death. While they represent an 
environmentally friendly solution for pest control, further exploration 
is necessary to evaluate their broader ecological impacts and ensure 
safe and practical usage (Abdel-Ghany et al. 2022). Application of Zn 
NPs on R. microplus adults was carried out and NPs were synthesized 
using Lobelia leschenaultina extract and at a concentration of 1.9 mg/mL 
indicating strong potential to control R. microplus infestation (Benelli et 
al. 2017).

8.3.1 Effect of synergy with other pesticides

Zinc oxide showed better results when used solo but its use with the 
combination of other traditional insecticides also showed better results 
in enhancing their mechanism to control pests, for instance when used 
with traditional insecticides like pyrethroids or organophosphates it 
lowers the dosage rate while showing better results (Abd El-Latef et al. 
2023). Several techniques are used to accomplish this synergistic action, 
such as ZnO NPs enhancing oxidative stress by producing ROS and 
improving the accessibility of the insect cuticle, which allows the 
chemical insecticide to penetrate more easily. A higher insect death rate 
and a slower pace of pest population resistance development are the 
outcomes of the combined effects (Jafir et al. 2023).

For example, research has demonstrated that ZnO NPs 
considerably increase the mortality rates of pests like Spodoptera litura 
and Tribolium castaneum when used in conjunction with pesticides like 
imidacloprid or Bacillus thuringiensis (Bt) toxins (Jafir et al. 2023; Abbas 
et al. 2024). On similar lines, ZnO NPs have demonstrated improved 
efficacy against pests such as Aedes aegypti, a mosquito that transmits 
several diseases, when combined with natural bio-pesticides like neem 
oil (Rajput et al. 2023). By reducing the dosage of hazardous pesticides, 
ZnO NPs' synergistic potential not only increases the effectiveness of 
pest control but also lessens the environmental impact, promoting more 
integrated and sustainable pest management techniques (Lan et al. 
2024; Aleem et al. 2023).

8.4 Titanium Dioxide NPs (TiO2NPs)

TiO2NPs gained attention in pest management due to their 
photocatalytic characteristics as it produce reactive oxygen species such 
as super-oxides and hydroxyl radicals when exposed to UV light 
(Olawade et al. 2024). These ROS are extremely harmful to insects 
because they induce oxidative stress, which damages proteins, DNA, 
and cell membranes, ultimately resulting in insect death. Because of 
their ability to break down organic materials like insect exoskeletons 
and cuticles and interfere with essential physiological functions in 
pests, the photocatalytic action of TiO₂ NPs makes them a desirable and 
environmentally benign choice for pest management (Ragheb et al. 
2023). Since light activates their mode of action, TiO₂ NPs, in contrast to 
conventional pesticides, do not rely on chemical toxicity and can 
effectively reduce pest populations with little harm to the environment. 
They can also be used to break down chemical residues in agricultural 
fields due to their photodegradation properties, providing the twin 
advantages of environmental rehabilitation and pest management 

(Shanaah et al. 2023).

8.4.1 Case studies in controlling pests

Numerous case studies have shown how TiO₂ NPs can be effectively 
used in agriculture to control pests. For example, TiO₂ NPs have been 
employed in greenhouse settings to reduce cotton aphids (Aphis 
gossypii) and two-spotted spider mites (Tetranychus urticae) in crops like 
cucumbers and tomatoes (Adetuyi et al. 2024). When exposed to UV 
radiation, TiO₂ NPs, which were sprayed on leaves in these tests, 
dramatically decreased insect populations without compromising plant 
growth or yield. In another case study, TiO₂ NPs demonstrated 
improved stored grain protection against Sitophilus zeamais by 
interfering with insect growth and respiration when exposed to light 
(Jasrotia et al. 2022). TiO₂ NPs have also been assessed for their use in 
integrated pest management (IPM) strategies, which combine them 
with other chemical or biological control techniques to increase overall 
pest control effectiveness while reducing the usage of pesticides. These 
case studies highlight the TiO₂ NPs as a light-activated, sustainable pest 
management tool in agriculture, providing a novel way to lessen 
reliance on chemical pesticides (Adetuyi et al. 2024). Titanium dioxide 
NPs were also analyzed to check larvicidal activity against Hyalomma 
anatolicum which were synthesized using an extract of solanum 
trilobatum extract results showed at a concentration of 25.85 mg/mL 
there is maximum potential for controlling H. anatolicum and noticed 
the reduction of Theileriosis disease which parasitizes the livestock 
including cattle, goats, and sheep (Al-Salih et al. 2023)

8.5 Copper NPs (Cu NPs)

Because Cu NPs can interfere with a number of insect physiological 
functions, they have demonstrated significant promise in the 
management of pests. Cu NPs primarily use the production of reactive 
oxygen species (ROS) to achieve their insecticidal actions. In insect cells, 
these ROS induce oxidative stress, which damages essential cellular 
constituents like proteins, lipids, and DNA (Rai et al. 2018). Cell death 
results from this oxidative damage because it weakens cellular 
membranes and interferes with metabolic functions. Furthermore, Cu 
NPs exacerbate oxidative stress in insects by interfering with the 
activity of detoxifying enzymes like catalase and superoxide dismutase 
(Pramanik et al. 2023). Additionally, Cu NPs have the ability to attach to 
proteins and enzymes, interfering with ion transport and nervous 
system processes, which can result in paralysis and death. It has been 
discovered that Cu NPs prevent different insect species from feeding 
and reproducing, which slows population growth and makes them 
useful pest management tools (Sharifi et al. 2022).

8.5.1 Application in integrated pest management (IPM)

Copper NPs are employed in integrated pest management (IPM), a 
multifaceted strategy of pest control that seeks to decrease the usage of 
chemical pesticides while promoting sustainability (Rodriguez et al. 
2024). Because of their low environmental toxicity and broad-spectrum 
insecticidal efficacy, Cu NPs are frequently included in IPM techniques. 
Because they work well at low concentrations, less chemical is needed, 
which makes them a good substitute for conventional pest control 
methods (Athanassiou et al. 2018). Additionally, to increase overall 
efficacy, Cu NPs can be used with other pest control agents, such as 
chemical insecticides or biological controls like entomopathogenic 
fungi. In addition to raising pest mortality, these synergistic effects 
postpone the emergence of resistance in pest populations (Javaid et al. 
2022).
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For instance, research has shown that Cu NPs improve insecticidal 
efficacy by promoting oxidative stress and membrane disruption when 
combined with traditional pesticides such as pyrethroids or 
neonicotinoids. Cu NPs are useful components of IPM in crops 
including cotton, maize, and vegetables because they have successfully 
suppressed agricultural pests like Helicoverpa armigera (cotton 
bollworm), Plutella xylostella (diamondback moth), and Spodoptera 
frugiperda (fall armyworm) (Pavan et al. 2024). Their use in Nano 
formulations or as a foliar spray based on NPs guarantees long-lasting 
pest control effects, lowering the need for pesticide applications and 
encouraging more environmentally friendly farming methods (Yadav 
and Yadav 2018).

9. Case Studies: Efficacy of metallic NPs against specific 
insect pests

Several plant viruses like cotton aphid (Aphis gossypii) and green peach 
aphid (Myzus persicae) imbibe sap from plants and help in spreading 
plant viruses and ultimately harm crops significantly (Singh and Singh 
2016). Among various  MNPs, Ag NPs and ZnO NPs are two of them 
that have shown great efficacy against these aphids. Ag NPs break 
down the cuticle layer of aphids and induce oxidative stress which 
damages the overall cell structure and stops them from eating, in these 
ways they both disrupt their physiology and respiratory processes 
(Singh et al. 2018). Moreover, it has been researched that ZnO NPs 
damage the aphids by the production of reactive oxygen species (ROS) 
to check their population and prevent the spreading of plant viruses. 
According to studies, applying these NPs topically successfully lowers 
aphid infestations, offering a sustainable substitute for conventional 
pesticides (Mishra et al. 2022). Whiteflies, such as the sweet potato 
whitefly (Bemisia tabaci), are well known for damaging crops by 
spreading viruses and sucking sap. Whitefly populations have been 
successfully managed by metallic NPs like Cu NPs and Ag NPs 
(Milenovic et al. 2019). Ag NPs induce oxidative stress in whiteflies and 
by the production of reactive species these NPs damage and kill their 
cells, while Cu NPs affect the nervous system and metabolic processes 
of whiteflies to intensify the insecticidal action (Bihal et al. 2023). 
Because of their small size, these NPs can be administered as foliar 
sprays, which effectively suppress pests by penetrating the exoskeleton 
of whiteflies. Utilizing MNPs in integrated pest management (IPM) 
systems has been demonstrated to dramatically lower plant virus 
transmission and whitefly populations (Saurabh et al. 2021).

Cotton bollworm (Helicoverpa armingera) and yellow peach moth 
(Conogethes punctiferalis) harm the crops by boring them into fruits and 
vegetables. Various metallic NPs like Cu, ZnO, and Ag NPs showed 
better results against these pests (Ofuya et al. 2023). Reactive oxygen 
species (ROS) produced by Ag NPs and ZnO NPs cause chronic 
oxidative stress and damage cells in fruit borer larvae, decreasing their 
ability to eat and survive (Nawaz et al. 2023). Cu NPs cause pest 
mortality by further inhibiting metabolic activities. According to 
studies, using these NPs on fruit orchards can greatly lower borer 
infestations and enhance fruit quality, providing a long-term option for 
pest control (Bihal et al. 2023). Meloidogyne spp., or root-knot 
nematodes, are a significant agricultural pest that seriously harms plant 
root systems, resulting in decreased uptake of nutrients and water. 
Nematocidal activity has been shown by metallic NPs such as CuO, 
ZnO, and Ag NPs (Tapia-Vázquez et al. 2022). These NPs disrupt the 
nematode cuticle integrity and produce reactive oxygen species (ROS), 
which damage the nematodes oxidatively and ultimately result in their 

death (Khan et al. 2023b). Additionally, CuO NPs have a substantial 
inhibitory effect on the motility and hatching of worms. Metallic NPs 
are a crucial tool for managing root-knot nematodes in a sustainable 
and environmentally friendly way because studies have demonstrated 
that their application in soil can dramatically reduce nematode 
infestations while also increasing root health and crop yields (Khan et 
al. 2022).

10. Cost and scalability issues

Although MNPs, such as Cu NPs, ZnO NPs, and Ag NPs, have shown 
great promise in agricultural pest management, a number of scalability 
and cost issues prevent their widespread use. The high cost of 
producing NPs is one of the main obstacles (Raza et al. 2024). High-
purity nanoparticle production is expensive due to the need for specific 
ingredients, complex machinery, and energy-intensive procedures 
(Kushnir and Sandén 2008). For example, because silver is a costly raw 
element, creating Ag NPs, which are renowned for their superior 
insecticidal qualities, can be costly. Because of this, small- and medium-
sized farmers cannot afford to utilize nanoparticle-based pest control 
products widely, particularly in developing nations where cost is a 
major consideration when making agricultural decisions (Hassan et al. 
2024). Scalability is still another important concern. Although small 
batches of NPs may be generated efficiently for laboratory and 
experimental uses, there are technical difficulties when scaling up 
production for large-scale agricultural use (Magalhães-Ghiotto et al. 
2021). Mass production is made more difficult by the requirement for 
stability, uniform particle size, and the avoidance of aggregation during 
storage and use. Furthermore, the current level of nanoparticle 
technology frequently limits the creativity and financial resources 
needed to produce formulations that are simple to use in field settings, 
whether through sprays, soil treatments, or seed coatings (Wang et al. 
2013). Scalability is also hampered by regulatory and environmental 
issues (Stensberg et al. 2011). Large-scale commercialization is further 
hampered by the absence of precise rules and regulatory frameworks 
for the use of NPs in agriculture, which increases uncertainty for 
producers and farmers (Zain et al. 2023).

13. Conclusion

Metallic nanoparticles such as silver, zinc and zinc oxide NPs, and 
copper showed efficient results in controlling both plant and animal 
insects, which offers an environmentally friendly alternative approach 
to various chemical pesticides and insecticides. These NPs are quite 
promising in their mode of action while combating hazardous insects 
through different mechanisms like the production of reactive oxygen 
species (ROS), induction of oxidative stress, physical damage to pest 
cuticle or cellular structure, and enzymatic disruption. For instance, Ag 
NPs effectively suppress aphids, ticks, mites, and whiteflies by 
penetrating exoskeletons and destabilizing physiological processes, 
while ZnO NPs reduce stored-grain pests like Sitophilus oryzae through 
ROS-mediated toxicity. Such innovations minimize environmental 
contamination, lower pesticide resistance risks, and enhance crop 
protection and livestock productivity. By addressing various barriers 
like cost-effective synthesis, field trials, and eco-friendly approaches 
MNPs could revolutionize pest control, aligning agricultural and 
livestock productivity with ecological sustainability to meet global food 
security demands amid climate change and population growth.
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