
1. Introduction

Over recent years, aquaculture has been advancing significantly faster 
than other animal husbandry sectors (Kalita et al. 2023; Nwafili and 
Chibanya 2023; Basir et al. 2024; Tenaya et al. 2024). Interestingly, about 
17% of animal protein and over 6% of total protein consumed by 
humans is sourced from aquaculture (Boyd et al. 2022; Montesqrit et al. 
2024). Vitamin B and omega-3 fatty acids are present in rich quantities 
in fish with lower saturated fats (Jabeen et al. 2024; Karadaş 2024). 
Unfortunately, fish consumption may threaten the health of humans 
due to a variety of contaminants, such as heavy metals. Heavy metals 
are classified into two groups, essential heavy metals and non-essential 
heavy metals (Arinola et al. 2025). Essential heavy metals are needed at 
optimum levels for all the body's vital functions, such as copper, zinc, 
nickel, iron, manganese, selenium, chromium, and cobalt. Otherwise, 
minimal amounts result in deficiencies, and excessive levels cause 
toxicity (Jagaba et al. 2024). Non-essential heavy metals, such as lead, 
aluminum, mercury, cadmium, etc., also known as xenobiotics, have no 
biological significance. However, excessive levels of these metals have 
toxic effects on the tissues of humans and animals (Ngu et al. 2022). 

They are naturally existing constituents of the crust of the earth and are 
recognized as the micronutrients of the hydric ecosystems with 
restricted tolerable concentrations, which have been elevating due to 
multiple anthropogenic activities including ever-increasing 
urbanization, and agricultural practices such as overuse of herbicides, 
fertilizers, fungicides, and industrialization (Bashir et al. 2020; Sonone 
et al. 2020; Pandey and Tiwari 2021; Rasheed and Du 2023; Mukanga et 
al. 2024; Santoso et al. 2024). These factors elevate the susceptibility of 
fish and humans as well as other invertebrates and vertebrates to 
natural hazards, including neurological disorders such as cognitive 
function impairment, tremors and Parkinson’s and Alzheimer’s 
diseases, hepatic and kidney disorders, cancer, reproductive problems 
including miscarriages, infertility and stillbirths, cardiovascular 
disorders and other health issues (Kolarova and Napiórkowski 2021; 
Monchanin et al. 2021; Mitra et al. 2022; Soliman et al. 2022). Heavy 
metals bioaccumulate in the fish from the heavily contaminated aquatic 
environment. In comparison to marine fish, freshwater fish have 
become more vulnerable to the toxicity of heavy metals. Because 
freshwater fish live by losing salt and gaining water, on the other hand, 
marine fish live by gaining salt and losing water. Freshwater fish have 
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higher concentrations of salts in their body as compared to their 
surroundings, which causes the continuous entering of water into the 
body through osmosis; on the other hand, marine fish have lower 
concentrations of salt in their body as compared to their surroundings, 
which causes the continuous losing of water through the body (Boyd et 
al. 2025; Kaur et al. 2025). Heavy metals enter the fish body through 
ingestion, gills, and skin (Najibzadeh 2025; Suleman et al. 2025). The 
bioaccumulation of metals in different parts of the fish is determined by 
the environment, water solubility, eating patterns, and fish physiology, 
such as health, age, size, fertility status, species, absorption rate, and 
different ecological niches (Sharma et al. 2024; Zaghloul et al. 2024). 
This study aims to provide information regarding the heavy metals-
induced hepatotoxicity and neurotoxicity in freshwater fish. 

2. General mechanisms of neurotoxicity in fish

The mechanisms of neurotoxicity include disruption of the activity of 
neurotransmitters, such as acetylcholinesterase, and hence impairment 
of neural signaling pathways (Medda et al. 2020). Heavy metal 
intoxications upregulate oxygen radical species production, leading to 
neuronal apoptosis through increased lipid peroxidation and 
mitochondrial dysfunction (Liu et al. 2023). Moreover, they allow 
penetration of more toxins due to the disintegration of the blood-brain 
barrier resulting in neuroinflammation and glial cell stimulation (Wang 
et al. 2021a). Consequently, this leads to neural atrophy and cognitive 
dysfunctions. Defects in the development and growth of the nervous 
system, which could be induced by environmental or hereditary 
elements, are generally referred to as neurodevelopmental disorders 
(NDDs) (Yilmaz et al. 2024). Regardless of whether external 
morphology remains unchanged, behavior is a sensitive indicator of 
changes in interior physiology (de Lagrán et al. 2024). In fish, behavior 
changes are frequently caused by impaired neurodevelopment and 
abnormal release of neurotransmitters, which are associated with 
exposure to heavy metals (Green and Planchart 2018; Althobaiti 2024; 
Murumulla et al. 2024). The World Health Organization reported lead, 

mercury, and cadmium as dangerous elements (WHO 2020). 
Additionally, aluminum, arsenic, and chromium are also reported to 
induce severe neurotoxicity in freshwater fish through different 
mechanisms in various studies (Patel et al. 2021; Boopathi et al. 2024a; 
Rezaei et al. 2024; Garg and Bandyopadhyay 2025). The mechanism of 
the neurotoxic effects of heavy metals is shown in Fig. 1 below.

3. General mechanisms of hepatotoxicity in fish

The liver is known for its metabolic detoxification and xenobiotic 
metabolism processes (Wu et al. 2024). Therefore, it comes under the 
category of organs most influenced by pollutants and contaminants 
(Wu et al. 2025). Several hepatotoxic effects can be seen in freshwater 
fish exposed to heavy metals. Oxidative stress is a key factor that is 

triggered by structural and functional modifications in catalase (CAT), 
superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) 
(Jomova et al. 2024; Sozen et al. 2024). This oxidative damage causes 
biochemical changes such as elevated lipid peroxidation that disrupts 
the hepatocyte membrane and may be linked to developing necrotic 
regions in the liver (Bashir et al. 2024). These biochemical changes lead 
to histopathological alterations such as the occurrence of sinusoidal 
dilation and congestion, squamous-like hepatocytes, necrosis, the 
proliferation of fibrotic tissues around muscles, vacuolization, 
eosinophilic bodies, and infiltration. All these factors lead to the 
development of histopathological lesions and ultimately liver damage 
(Rajkumar 2022; Elumalai et al. 2023). Mechanism of toxicity in fish is 
show in Fig. 2.

4. Various metals that cause neurotoxicity and 
hepatotoxicity in freshwater fish

4. 1 Cadmium (Cd)

Despite being a non-essential, persistent, and non-biodegradable 
element, cadmium is extremely harmful to people, animals, and plants, 
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Fig. 1: Mechanisms of heavy metal-induced neurotoxicity in 
freshwater fish (ROS – Reactive oxygen species; SOD – Super
oxide dismutase; CAT – Catalase; GST – Glutathione S-
transferase)

Fig. 2: Mechanisms of heavy metal-induced hepatotoxicity in 
freshwater fish



even in low quantities (Sable et al. 2024). As the seventh most abundant 
element on Earth, Cd is found in rocks, soils, plants, and volcanic dust. 
Numerous freshwater fish species, such as Danio rerio, Pimephales 
promelas, and Oncorhynchus mykiss, have been examined for their 
neurological effects at lower concentrations of Cd (Oleinikova et al. 
2024). According to these studies, Cd causes alterations in social and 
flight behavior, boosts auditory thresholds, impairs the neuromast and 
sensory macula, and builds up in the olfactory bulb (Patel et al. 2021; 
Rani et al. 2022; Xu et al. 2022; Naz et al. 2023; Nalivaikienė et al. 2024). 
Cd can accumulate in the brain of adults and upregulate the expression 
of apoptotic genes, including Jun proto-oncogene, AP-1 transcription 
factor subunit, and detoxifying genes such as metallothionein 1 (mt1) 
and metallothionein 2 (mt2), even at very low levels of exposure (Hu et 
al. 2022; Al Marshoudi et al. 2023). By increasing the concentration 
levels, upregulation of the nuclear factor erythroid 2-related factor 2 in 
the telencephalon and olfactory bulb can be observed when the 
exposure period is less than 24 hours (Xu et al. 2023; Alharbi et al. 
2024). It also increased the expression of mt1 and mt2 in the brain, as 
demonstrated by another study (Liu et al. 2024). Nuclear factor 
(erythroid 2-related factor 2) and metallothioneins (mt1 and mt2) are 
considered defenses that aid in reducing oxidative stress and regulating 
cellular homeostasis. However, these protective mechanisms appeared 
to be overcome after exposure to elevated duration and concentration 
of Cd, resulting in the downregulation of the antioxidant enzyme heme 
oxygenase 1 (HO-1) and metal-responsive transcription factor 1 (MTF1) 
pathway. Consequently, symptoms of tissue degeneration become 
evident due to elevated oxidative stress and inflammation (Choudhury 
et al. 2021; Min et al. 2021; Patel et al. 2021; Talukder et al. 2021; Banaee 
et al. 2023; da Silva et al. 2023; Motta et al.2025). These disruptions 
comprise alterations in the structure of retinal neurons, intensified light 
sensitivity, reduction in glial fibrillary acidic proteins, and increased 
concentrations of malondialdehyde, nitric oxide, and ROS. In general, 
Cd triggers oxidative stress reactions and stimulates the induction of 
detoxification genes in adults and embryonic larvae. Moreover, during 
the embryonic and larval phases, the maturing sensory system was 
more vulnerable to Cd toxicity (Khan et al. 2023). Similarly, Cd at 
higher concentrations accumulates in the liver, the primary organ for 
metal detoxification, and causes damage (Rasin et al. 2025). For 
instance, Wu et al. (2019) reported that Cd induces hepatocyte necrosis 
by disrupting the lipid metabolism in Gobiocypris rarus when exposed to 
higher concentrations. Moreover, Rahmi et al. (2024) reported severe 
liver damage in Oreochromis niloticus when exposed to Cd by excessive 
secretion of aspartate transaminase (AST) and alanine aminotransferase 
(ALT) enzymes, downregulating total protein levels, upregulating total 
lipid levels that lead to the disruption of metabolic processes and 
ultimately liver dysfunction. Hence, Cd increases the morbidity and 
mortality of freshwater fish due to its direct influence on its nervous 
system and liver.

4.2 Mercury (Hg)

High Hg levels are more toxic to both animals and humans. Studies 
demonstrate that D. rerio, P. promelas, and Diplodus sargus show 
neurologically damaging effects when exposed to it. For instance, 
studies on adults have revealed that Hg activates the metallothionein 
gene in the brain at concentrations below 200 ppb, but otherwise does 
not impact other neural transcripts (Alam et al. 2021; Zhu et al. 2022). 
On the other hand, minimal inorganic concentration exposure led to 
impaired foraging ability, suppression of membrane adenosine 

deaminase, and abnormal swimming patterns (Albers et al. 2022; Jeong 
et al. 2024). Intermediate concentrations revealed a notable 
accumulation of Hg in the brain (Zhang et al. 2023) which cause high 
mortality, late hatching (Barst et al. 2022), reduction in dopamine, 
neurotransmitters, and serotine associated with the onset of 
hyperactive behavior (Nielsen et al. 2017; Chen et al. 2021; Solakhiyah 
et al. 2023). Exposure to elevated levels of Hg modifies amino acids 
associated with oxidative phosphorylation and gap junctions, causes 
mitochondrial dysfunction, and upregulates the metallothionein gene 
expression (Rasinger et al. 2017; Trivedi et al. 2022; Singh et al. 2024). 
Notably, this disruption may be associated with the modifications in the 
mammalian target of the rapamycin (mTOR) pathway activated by 
oxidative stress triggered by Hg. Another investigation specifically on 
zebrafish embryos demonstrated its sensitivity toward low 
concentrations of Hg resulting in modification at cellular, molecular, 
and behavioral levels. For example, exposure at the embryonic 
development stage to Hg levels below 30 ppb caused adult vision 
impairments, hyperactivity, suppression of neural tube cell growth, and 
higher mortality (Bakar et al. 2017; Cano-Viveros et al. 2021; Henriques 
et al. 2023). Significant harmful effects, such as delayed hatching, 
reduced head size, modified cAMP signaling, and mortality, can be 
observed at levels above 50 ppb (Bakar et al. 2023; Henriques et al. 
2023). Similarly, Hg caused hepatotoxicity in freshwater fish. For 
instance, according to a study conducted by Lei et al. (2025), exposure 
of D. rerio to low levels of Hg caused liver damage evidenced by 
oxidative stress in hepatocytes leading to the activation of intrinsic 
apoptotic pathway, the uncontrolled activity of kinases and nuclear 
receptors, mitochondrial dysfunction and abnormal endocrine 
secretions. Another study demonstrated the hepatocyte disruption in 
Geophagus brasiliensis by elevating lipoperoxidation in response to 
oxidative stress and impaired activity of antioxidant enzymes, 
including catalase (CAT) and glutathione peroxidase (GPx) (Monteiro et 
al. 2024). Furthermore, Mohamed et al. (2019) reported severe 
hepatotoxic impacts of mercury along with lead on Clarias gariepinus 
including severe hepatic cords, excessive hepatocyte necrosis, 
melanomacrophage aggregation, and hemolysis. Lastly, Pervaiz et al. 
(2019) reported liver damage in O. niloticus after exposure to sublethal 
concentrations of Hg. The disruption included hepatocyte destruction, 
the occurrence of karyolysis and pyknotic nuclei, sinusoids, tissue 
degeneration, vacuolization, and cellular necrosis. In conclusion, 
mercury causes severe damage to freshwater fish by inducing 
neurotoxic effects including hyperactivity, delayed hatching, reduced 
head size, and increased mortality rate, and hepatotoxic effects such as 
reduced activity of antioxidant enzymes, hepatocyte necrosis, and 
hemolysis.

4.3 Lead (Pb)

Pb is known as a natural element of the geological crust and is present 
in micro-concentrations in plants, water, and soil. However, 
anthropogenic activities have caused its high accumulation which is 
dreadful for aquatic life. It is mainly because of the increased affinity of 
Pb for a particular protein due to its capacity to develop a stable 
complex with oxygen and sulfur atoms in protein (Lee et al. 2019). For 
instance, numerous genes responsible for the development of the 
nervous system are modified by Pb at low concentrations, such as 
elevated protein expression of the GABA gene during embryonic 
maturation (Paduraru et al. 2023). These modifications were due to 
incomplete nerve development, resulting in slower neuronal signaling 
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and inefficient communication between the neurons due to reduced 
axon length (Liu et al. 2024). Moreover, zebrafish showed changed color 
preferences and reduced adult learning at concentrations of more than 
100 ppb (Paduraru et al. 2021; Thawkar and Kaur 2021). However, 
lasting learning impairment for three generations after first exposure 
revealed the ability of Pb to cause modifications in the epigenome 
(Wang et al. 2022a). Also, Pb above 100 ppb concentrations caused 
hyperactivity, trembling, abnormal swimming, muscle tremors, and 
rapid breathing in Coregonus lavaretus and Cyprinus carpio (Gashkina et 
al. 2022; Habib et al. 2024). Lastly, elevated levels of Pb disturbed 
cognitive functions and motor activity in zebrafish by suppressing 
neurexin 2 expression, which is essential for neural development (Tu et 
al. 2017). Similarly, Pb affects the health of freshwater fish by inducing 
hepatotoxicity. For instance, a novel study on superoxide dismutase 
(Sod) deficiency in D. rerio liver caused by Pb revealed that like Cd, Pb 
toxicity triggered oxidative stress in the cell by disrupting the activity 
of SOD by shifting Zn and Cu ions from its catalytic pockets (Wang et 
al. 2022b). Hence, oxidative stress can be a key factor in Pb-induced 
abnormalities in freshwater fish (Guo et al. 2021; Shafiq et al. 2024). 
Moreover, Dey et al. (2024a) demonstrated hepatotoxicity in D. rerio 
when exposed to 5 ppm concentration levels. It triggered severe 
oxidative stress, resulting in lipoperoxidation and, ultimately, 
apoptosis. However, activation of the Nrf2-Keap1 signaling pathway in 
response to oxidative stress was the cellular defense mechanism that 
has been observed. A similar pattern of activation of the Nrf2-Keap1 
defense mechanism has been seen in Anabas testudineus when exposed 
to 43.4 ppm Pb concentration (Dey et al. 2024b; Helmizuryani et al. 
2024). Similarly, Giri et al. (2021) indicated that the Pb-induced 
impairment of the cytochrome P450 detoxification system results in the 
slow detoxification of pollutants in C. carpio, causing liver dysfunction 
by reducing liver enzyme aspartate aminotransferase through its 
leakage into the blood. Hence, Pb contamination causes serious 
neurotoxic and hepatotoxic effects in the freshwater fish and risks their 
survival.

4.4 Aluminum (Al)

Al makes up 8.1% of the Earth's mass and so categorized as the most 
frequent natural metallic element and the third most common mineral 
in the crust (Upadhyay 2025). Al affects aquatic organisms adversely 
(Botté et al. 2022). Al-induced oxidative stress is a key factor that targets 
the cognitive functions and behaviors of fish by interrupting cellular 
metabolism. For instance, long-term exposure suppressed the 
antioxidant enzymes produced in response to oxidative stress, such as 
brain catalase activity (CAT) in Channa punctatus, Oreochromis 
mossambicus, and Ctenopharyngodon Idella (Closset et al. 2021; Aydin et 
al. 2024). This suppression in CAT was explained by the inhibition of 
gene expression and the binding of Al ions to enzyme thiol groups 
(Rahimzadeh et al. 2022). Similarly, Temiz and Kargın (2022) reported 
the significant suppression of glutathione S-transferase (GST), 
superoxide dismutase (SOD), and glutathione peroxidase (GPx) in O. 
niloticus leading to lipid peroxidation due to elevating oxygen radical 
levels. Moreover, a significant production of AChE was reported in D. 
rerio on exposure to 50 μg/L AlCl3, which diminished the locomotor 
activity, including lowering maximum speed, elevating the absolute 
angle of rotation, and reducing traveled distance (Kaur et al. 2022; 
Nadiga and Krishna 2024; Zhang et al. 2024). Furthermore, there are 
reports of swimming impairment in D. rerio larvae when exposed to Al 
at concentrations below 100 µM, including lowering the time and 

velocity of movement, reducing average traveled distance and number 
of headings due to modification in glucose metabolism and restricted 
neuroblast differentiation due to decreasing numbers of neural stem 
cells (Wei et al. 2018; Capriello et al. 2019, Gao et al. 2022). Boopathi et 
al. (2024a) reported that in D. rerio after being exposed to Al witnessed a 
decline in their spatial learning abilities. Cognitive deficiencies were 
linked to a reduction in the forebrain's neuronal plasticity and 
Neurogenic differentiation factor 1 (NeuroD1) expression in the 
telencephalon (Tutukova et al. 2021). Several studies have revealed the 
hepatotoxic effects of Al on freshwater fish. For instance, the exposure 
of O. niloticus to 2.6 ppm concentration levels of Al2O3 induced severe 
liver damage by triggering oxidative stress through elevating levels of 
thiobarbituric acid reactive substance (TBARS) and consequently, 
damaging hepatocyte cell membrane (Temiz and Kargın 2022). It also 
caused genotoxicity by upregulating the biomarker of DNA oxidative 
damage known as 8-hydroxy-2-deoxyguanosine (8-OHdG). In another 
study, O. niloticus exposed to 4 mg/L concentration of Al2O3 NPs 
indicated irreversible liver damage due to the induction of 
melanomacrophage aggregation leading to necrosis of hepatocytes 
(Massoud et al. 2021). Aluminum exposure of freshwater fish exhibits 
neurotoxic and hepatotoxic effects by causing cognitive deficiencies and 
genotoxicity in hepatocytes.

4.5 Arsenic (As)

As is regarded as an environmental contaminant. Different countries 
have restricted As concentration to conserve aquatic biodiversity 
(Saxena 2025). For instance, according to Brazilian law, the highest 
amount of As tolerable for aquatic fauna is 10 µg/L (de Souza et al. 
2019). However, As toxicity in the nervous system gained minimal 
recognition compared to its impacts on cellular disruption, genetic 
toxicity, and cancer (Chuong et al. 2024; Garkal et al. 2024). Neurotoxic 
effects of As has been observed in D. rerio when exposed to 50 µg/L and 
500 µg/L of sodium arsenate for 30 days (Ma et al. 2024). Consequently, 
neurobehavioral dysfunctionalities can be observed including reduced 
social interaction and cognition, long-term memory impairment, and 
lower aggression levels. In another study, low performance of D. rerio in 
the latent learning task and disrupted memory due to alteration in 
dopamine-associated genes in the brain when exposed to high (100 µg/
g) and medium (60 µg/g) doses of As were observed (Rachamalla et al. 
2023). Moreover, the disruption of neurotransmitter AChe in C. carpio 
after 30 days of arsenite exposure at 2.83 mg/L resulting in disrupted 
coordinated behavior, slowed reflexes, and memory loss was observed 
(Wang et al. 2021). In a study on Labeo rohita the exposure to As (20.25 
mg/L) induced severe liver damage due to severe oxidative stress, 
excessive secretion of ALT, AST, and ALP, and upregulation of 
cytochrome P450 gene expression (Khalid et al. 2024). Similarly, the 
histopathological and metabolic damage in the liver of D. rerio exposed 
to arsenic was reported (Ragupathi et al. 2022). Likewise, in another 
study within 48 hours of exposure to the nonlethal As doses, C. 
punctatus hepatopancreas developed severe degenerative alterations 
(Chandel et al. 2024). C. batrachus exposure to sodium arsenate caused 
babbling of the nucleus and necrosis of hepatocytes, infiltration, and 
abnormalities in the original architecture (Pichhode et al. 2022). Lastly, 
arsenic hepatotoxicity in C. gariepinus led to several histopathological 
modifications comprising of liver cell enlargement and cell 
proliferation, lymphocytic accumulation, dilated blood vessels, 
reduction in cellular glycogen levels, necrosis, and melanomacrophage 
clustering (Moneeb et al. 2020). Hence, arsenic can alter the 
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neurobehavioral patterns and histopathology of the liver in freshwater 
fish.

4.6 Chromium (Cr)

According to the US Environmental Protection Agency, Cr is one of the 
most prevalent heavy metal pollutants and is regarded as a dangerous 
element (Sable et al. 2024). The most toxic state of Cr is Cr [VI] due to its 
property of rapid accumulation in the living cells (Muddin et al. 2024). 
For instance, the neurotoxic effect of Cr on zebrafish and snakehead fish 
included severe oxidative stress, blood-brain barrier injury, and 
ferroptosis (Li et al. 2024). Another study reported severe oxidative 
s t re s s i n b r a i n c e l l s , g e n e e x p re s s i o n a s s o c i a t e d w i t h 
neuroinflammation, and cognitive dysfunction in D. rerio on exposure 
to Cr (Boopathi et al. 2024b). Additionally, Xu et al. (2021) demonstrated 
the suppression of neurogenesis in the embryo of zebrafish by 
suppressing the activity of proneuronal genes, including zash1a, zash1 
b, and ngn1, when exposed to a 9 µM sub-lethal dosage of Cr for one 
day. Consequently, incomplete development of the nervous system 
causes cognitive dysfunction, abnormal swimming patterns, increased 
heart rates, and disturbances in reward pathways. Moreover, irregular 
swimming patterns and lethargy were observed in C. punctatus as a 
result of DNA damage triggered by excessive production of 
micronuclei in interphase cells (Yadav 2023). A similar pattern of DNA 
damage was observed in D. rerio when exposed to 2 mg/L Cr [VI] with 
the activation of the Nrf2-ARE signaling pathway in response to 

oxidative stress. Consequently, abnormal behavior patterns included 
irregular swimming patterns, slow activity, and cognitive impairment 
(Shaw et al. 2020). Similarly, the exposure of O. niloticus to 4.57 mg/L 
hexavalent chromium Cr (VI) caused hepatotoxic effect by triggering 
oxidative stress, impairing the detoxification mechanism through 
suppressing GST and CYP450, which are involved in clearing reactive 
oxygen species and metabolizing heavy metals in the cells and induced 
apoptosis through upregulating caspase-3 and downregulating Bcl-2 
(Mohamed et al. 2020; Shafqat et al. 2023). The histopathological 
changes in Ctenopharyngodon idella after exposure to sublethal 
concentrations of Cr (VI), including dilation of sinusoidal space, 
intracellular vacuolation, glycogen depletion, dilation of rough 
endoplasmic reticulum, lymphocyte infiltration, hemorrhage, and 
hepatopancreas degeneration, were observed (Handa and Jindal 2021). 
Moreover, Awasthi et al. (2018) reported adverse effects of Cr6+ on the 
liver of Channa punctatus when exposed for a longer time, and at higher 
dosages through oxidative stress, DNA damage, and apoptosis. All 
these destructive mechanisms were evident in hepatic cells through 
increased activity of CAT, SOD, NOX-1 and GSR genes, increased 
number of micronuclei, and increased activity of apoptotic genes 
including apaf-1, casp3a, and bax. The synergistic effects of arsenic and 
chromium on liver damage in D. rerio has been reported (Kamila et al. 
2024). Lastly, in a study on C. carpio, the exposure to a sub-lethal 
concentration of Cr led to excessive production of Serum glutamic 
pyruvic transaminase (SGPT) and Serum glutamic-oxaloacetic 
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Table 1 Prevalence, effective concentration, and mechanisms of heavy metal neurotoxicity in different freshwater fish species

Heavy 
metal Prevalence Effective 

concentration Species Neurotoxicity Reference

Cd Low 1.9 ppb –1000 ppb D. rerio,
P. promelas,
O. mykiss,

♣Social and flight behavior,
♣Boosts auditory thresholds,
♣↑  Expression of detoxifying genes and 
apoptotic genes

(Xu et al. 2022; Naz et 
al. 2023; Nalivaikieė et 
al. 2024)

Hg Low 200 ppb - 13 ppm D. sargus,
D. rerio,
P. promelas,
O. niloticus,
P. flavescens

♣Activation of the mT2 gene in the brain
♣Impairing foraging ability
♣Abnormal swimming patterns 
♣Mitochondrial malfunction

(Alam et al. 2021; Zhu 
et al. 2022;
Albers et al. 2022; Jeong 
et al. 2024; Usman et al. 
2024)

Pb Low 10 ppb to 2 ppm S. gairdneri,
S. fontinalis,
T. pavo,
G. mirabilis,
D. rerio

♣↑ GABA gene and protein expression
♣Modifications in the epigenome
♣Learning impairment 
♣Hyperactivity
♣Trembling
♣Abnormal swimming
♣ Muscle tremors
♣ Rapid breathing

(Paduraru et al. 2023; 
Liu et al. 2024; Habib et 
al. 2024)

Al Low Less than 100 µM C. punctatus,
O. mossambicus,
C. Idella,
D. rerio, 
S. salar

♣Inducing oxidative stress by suppressing 
CAT, GST, SOD and GPx
♣Increased lipoperoxidation 
♣Diminished
locomotor activity

(Capriello et al. 2019; 
Closset et al. 2021; 
Rahimzadeh et al. 2022; 
Temiz and Kargın 2022)

As Low 0.001 mg/L – 100 
mg/L

D. rerio,
C. carpio

♣Impaired long-term memory
♣Impaired cognitive performance

(Wang et al. 2021;
Rachamalla et al. 2023;
Ma et al. 2024)

Cr Medium 2 mg/L – 19.7 mg/L D. rerio,
S. schlegelii,
C. punctatus

♣Severe oxidative stress in brain cells
♣G e n e e x p r e s s i o n a s s o c i a t e d w i t h 
neuroinflammation and Alzheimer’s disease
♣Cognitive impairment

(Shaw et al. 2020; Yadav 
2023; 
Boopathi et al. 2024b)



transaminase (SGOT), indicating liver damage (Ali et al. 2021). In 
conclusion, all the above studies proved the neurotoxic and hepatotoxic 
effects of Cr exposure in freshwater fish. The mechanisms of 
neurotoxicity and hepatotoxicity caused by heavy metals are given in 
Tables 1 and Table 2, respectively, along with effective concentrations.

5. Conclusion

These findings demonstrate the adverse effects of heavy metals on 
freshwater fish, with compelling evidence of hepatotoxicity and 
neurotoxicity. These metals bioaccumulate in the nervous system, 
resulting in impaired cognitive functions and abnormal behavior, while 
hepatotoxic effects disturb detoxification and metabolic processes and 
ultimately influence the health of the ecosystem.  Toxicity induced by 
heavy metals not only has adverse effects on fish but also influences 
aquatic food webs and human food security. Therefore, the focus 
should be on the detoxification of the heavy metals by developing 
proactive assessment and mitigation strategies. Upcoming studies 
should focus on sustainable pollution control measures and the 
prolonged effects of heavy metal toxicity on aquatic life to understand 
the mechanism of toxicity and develop permissible environmental 
limits.
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