
1. Introduction

One of the most pressing concerns in global public healthcare is the 
growing challenges posed by antibiotic resistance (Gulumbe et al. 
2025). Antibiotic resistance is defined as the ability of microbes to resist 
the harmful effects of antimicrobial components, thereby sabotaging 
years of healthcare advancements and undermining the efficacy of 
current treatments (Mehrotra et al. 2024). According to the World 
Health Organization (WHO), multidrug-resistant pathogens are behind 
approximately 700,000 fatalities every year; moreover, according to an 
assessment, this number may be elevated to ten million by 2050 if 
necessary initiatives have not been taken (Ahmed et al. 2024). Several 
factors contribute to the development of this silent pandemic, including 
the excessive misuse of antibiotics in both healthcare and agricultural 
settings, inadequate infection prevention techniques, and slow progress 

in improving antibiotic quality (Manyi-Loh et al. 2018). Furthermore, 
rapid evolution and modification are the distinct properties of bacteria 
that contribute to their progressive resistance mechanisms. For instance, 
stimulation of efflux pumps, beta-lactamase enzyme synthesis, and 
changes in molecular targets (Ahmed et al. 2024). Furthermore, 
healthcare systems have to face severe economic losses due to antibiotic 
resistance, including escalated expenses due to prolonged 
hospitalization, compulsion for high-priced and harmful procedures, 
and extended diagnostic analysis (Baciu et al. 2024). Additionally, at the 
global level, food security and biosafety have also been affected 
severely by antibiotic resistance, as MDR microorganisms progressively 
impact both livestock and aquatic animals (Founou et al. 2021). 
Regardless of global projects, including the Global Action Plan on 
Antimicrobial Resistance, an immediate requirement for the 
development of advanced strategies should be met to overcome this 
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Abstract 

The escalating crisis of antibiotic resistance worldwide poses considerable dangers to public 
health, emphasizing the ineffectiveness of traditional antibiotics against multidrug-resistant 
bacterial strains. Consequently, scientists are working on new strategies that serve as substitutes or 
complementary techniques to conventional antibacterial therapeutics. Three potential approaches 
include: phage therapy, nanoparticles, and natural antimicrobials. Phage therapy uses 
bacteriophages, viruses that particularly target and destroy bacteria, to offer an extremely 
exclusive, versatile, and self-replicating treatment alternative. Both polymeric and metal-based 
nanoparticles demonstrate promising antibacterial activities through different mechanisms, 
including cell membrane degradation, oxidative stress generation, biofilm synthesis inhibition, 
and improved drug delivery by working synergistically with other antibiotics. Nanoparticles can 
also be manipulated to enhance selectivity and decrease toxic effects. Plant, algae, and animal-
derived natural antimicrobials comprise a wide variety of structurally distinct compounds offering 
antimicrobial activities against a broad spectrum of bacteria, including interfering with the 
mechanisms of resistance development.  Progress in genomics, biotechnology, and nanoscience is 
opening new pathways of innovation, improvement, and administration of these new substances.  
This review highlights the modes of action, recent clinical studies, and possible therapeutic 
applications of these alternative strategies, underlining their role in overcoming the problems of 
antibiotic resistance.
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escalating dilemma (Talebi et al. 2019).

Conventional antibiotic treatments are regarded as the foundation 
of mainstream medicine. However, they have been increasingly 
unsuccessful in controlling resistant pathogens. Conventional 
antibiotics' ability to demonstrate bacteriostatic or bactericidal effects 
by targeting protein synthesis, cell wall formation, and nucleic acid 
replication is also responsible for the emergence and multiplication of 
resistant variants (Uddin et al. 2021). Moreover, horizontal gene transfer 
amplifies the propagation of drug-resistant genes in bacterial 
communities and reduces the efficiency of many frontline and final-line 
antibiotics (Amábile-Cuevas and Lund-Zaina 2024). Similarly, the 
inability of conventional antibiotics to break through the biofilms is 
another considerable limitation. Biofilms are defined as complex 
bacterial communities enclosed in a protective intercellular matrix and 
primarily contribute to chronic infections. They show approximately 
1000 times more resistance to antibiotics than their planktonic forms 
(Sharma et al. 2023; Lenchenko et al. 2024). The major factors behind the 
emergence of this resistance include the ability of persister cells to 
survive the antimicrobial invasion, restricted penetration of antibiotics, 
and modifications in the microenvironment of the biofilm (Uruén et al. 
2020). Furthermore, scientific, financial, and supervisory challenges 
have slowed down the development of novel antibiotics. Additionally, 
drug manufacturers have to deal with extravagant costs and an 
extensive timeframe for antibiotic development, combined with limited 
economic outputs, as the typical application of antibiotics is limited to 
reducing resistance (Muteeb et al. 2023). Therefore, medical 
professionals are currently left with limited alternatives for tackling 
resistant infections, owing to the gap in the development of a diverse 
range of efficient antibiotics. Conventional antibiotics have problems 
that exceed resistance. The vague nature of various antibiotics mostly 
leads to off-target delivery, resulting in the deterioration of probiotic 
microflora. Additionally, this may cause ecological imbalances at a 
broader level and lead to secondary infections, including Clostridioides 
difficile colitis (Shim 2023). These challenges emphasize the necessity of 
a substitute therapeutic modality to overcome the complicated 
antibiotic resistance processes. This review article highlights the 
medicinal potential of phage therapy, nanotechnology, and natural 
antimicrobials to fight against MDR bacterial strains. 

2. Phage Therapy

Traditional antibiotics have been successfully substituted by phage 
therapy (Pal et al. 2024). It is an intervention that was developed before 
antibiotics; however, it has been gaining attention due to its potential 
applications against antibiotic resistance (Malik et al. 2021). 
Bacteriophages are the viruses that solely attack and spoil bacteria 
(Ranveer et al. 2024). Frederick Twort and Félix d'Hérelle were the first 
ones to individually discover bacteriophages in 1915 and 1917, 
respectively (Gordillo Altamirano and Barr 2019). Bacteriophages are 
known for their extremely peculiar nature of infecting a particular 
species or even a specific bacterial strain, compared with the 
miscellaneous nature of antibiotics targeting a broad spectrum of 
bacterial species (Sanz-Gaitero et al. 2021). This destructive mechanism 
of the phage is fueled by its ability to recognize and bind to specific 
receptors on the bacterial cell membranes (Hatfull et al. 2022).

2.1 Life Cycle of Bacteriophage

Lysogenic and lytic cycles are the life cycles of bacteriophage, counted 
among the most fundamental facets of its antibacterial mechanisms 

(Kortright et al. 2019). The direct association of the lytic cycle with the 
deterioration of the bacteria confirms its therapeutic importance (Dong 
et al. 2021). The lytic cycle is initiated by the attachment of the tail fibers 
of the phage to the surface of the exposed bacteria by identifying 
unique receptors on the cell wall (Ouyang et al. 2024). After adhering, 
the phage hijacks the bacterial biological machinery by injecting its 
genetic material into bacterial cells (Wang et al. 2024). Consequently, the 
inserted DNA triggers the cellular machinery to synthesize viral 
elements, such as nucleic acids and proteins needed to reproduce new 
phages (Pfeifer et al. 2022). As a result, continuous replication of new 
phages filled the bacterial cell. Fresh phages are released into the 
surroundings after the accumulation of phage particles ultimately 
causes the bacterial cell to burst (Dennehy and Abedon 2021). These 
released phages can target neighboring bacteria, transmitting the loop 
of infection and disintegration (Taati Moghadam et al. 2020; Zalewska-
Piątek and Piątek 2020). The bactericidal properties of the lytic cycle 
demonstrate the effective defense of the bacteriophages, particularly 
against MDR bacteria (Hasan and Ahn 2022).

2.2 Application of Phage Therapy

The application of phage therapy in established medical practice 
consists of four main steps, as mentioned in Fig. 1: Firstly, the 
identification of the bacterial pathogen involves recognition of the 
pathogen using procedures like PCR to determine the particular 
bacterial strain triggering the infection after the diagnosis of the patient 
(Gerace et al. 2022). Secondly, the phage screening or engineering 
process led to the selection of phages based on the antibacterial 
activities and, if needed, engineered them for improved results. In vivo 
and in vitro settings are utilized to establish the safety and validity 
(Łobocka et al. 2021). The third step is bacteriophage preparation that 
involves proliferation, identification, and isolation of competent 
phages, consequently providing better preparation for therapeutic 
purposes (João et al. 2021). And lastly, application and monitoring 
include the administration of the phage via the most effective 
procedure, assessment of the therapy outcomes, and observation for 
any future alterations (Briot et al. 2022).

Recently, to evaluate the efficacy and understand the combating 
mechanism of phage therapy against MDR bacteria, several clinical 
trials and scientific investigations have been conducted by 
microbiologists, as mentioned in Table 1. For example, Kaabi et al. 
(2020) and Wittebole and Opal (2020) performed a case study to find 
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Fig. 1. Steps involved in the preparation and application of 
phage therapy
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out the efficacy of phage therapy against Pseudomonas aeruginosa 
induced chronic otitis. Complete recovery with a significant reduction 
in the bacterial loads in the patient was the outcome. Wittebole and 
Opal (2020) demonstrated a 70 percent recovery in patients with 
diabetic foot ulcer triggered by MDR Staphylococcus aureus, both in the 
presence and absence of standard care. Moreover, according to Law et 
al. (2019) and Tamma et al. (2022), patients with cystic fibrosis induced 
by P. aeruginosa exhibited complete recovery, characterized by a 
reduction in bacterial count and increased pulmonary activity. 
Furthermore, Onallah et al. (2023) emphasized the importance of phage 
therapy as a potential last-resort medication in a clinical trial where it 
was administered as compassionate treatment to patients with sepsis 
caused by Acinetobacter baumannii. Another investigation led by Jault et 
al. (2019) showed the high effectiveness of phage therapy through a 
considerable reduction in the burn wound infection and rapid healing 
triggered by MDR P. aeruginosa, Escherichia coli, and Klebsiella 
pneumoniae. Similarly, Leitner et al. (2021) revealed that direct 
administration of phage therapy into the bladder resulted in the full 

recovery and considerable reduction in signs and symptoms in patients 
suffering from urinary tract infection caused by MDR bacteria. Taha et 
al. (2019) demonstrated that after failure of several antibiotic courses, 
improved limb activity and full recovery in patients with diabetic leg 
infection caused by K. pneumoniae. Lastly, Ooi et al. (2019) showed that 
phage therapy led to a significant reduction in bacterial count and sinus 
symptoms in patients with chronic rhinosinusitis caused by S. aureus.

3. Nanoparticles (NPs)

To overcome the resistant mechanisms of bacterial strains, NPs have 
been introduced as a promising cutting-edge technique in medical 
systems, along with new approaches to overcome the challenges of 
conventional therapeutics (Mehwish et al. 2024; Shaban et al. 2025). NPs 
are defined as nano-sized materials with unique physical and chemical 
properties, such as enhanced surface area, highly reactive, atomic-level 
associations with biological systems, and controlled surface chemistries 
(Khan and Hossain 2022). These unique characteristics of NPs are the 
reasons behind the elevated efficiency of traditional antibiotics, the 
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Table 1 The efficacy and efficiency of phage therapy against multiple MDR bacteria in clinical trials and case studies 

Clinical trial/
case study

Antibiotic-
resistant 
bacteria

Obsolete 
antibiotic

Condition 
treated

Phage therapy 
results Observations References

Chronic Otitis P. aeruginosa Carbapenem Chronic Otitis 
Media

Bacterial load 
reduction and 
significant clinical 
improvement

Direct injection of phages 
into the infected zone 
indicated high efficacy

(Kaabi et al. 
2020; Wittebole 
and Opal 2020; 
Mohammed et 
al. 2024)

Compassionate 
use

A.baumannii Carbapenem Sepsis Complete recovery 
was ensured by phage 
therapy

Phage therapy acted as a 
promising last-resort 
therapeutic agent in 
emergencies

(Onallah et al. 
2023; Dorgham 
et al. 2024)

UTI Treatment E. coli Penicillins, 
cephalosporins

Urinary tract 
infection

80% of patients 
showed complete 
recovery

Persistent Antibiotic-
resistant UTIs were 
recovered by phage therapy 
when administered directly 
into the bladder

(Leitner et al. 
2021)

Chronic 
Rhinosinusitis

S. aureus Methicillin, 
vancomycin

Chronic 
rhinosinusitis

Significant decrease in 
bacterial colonization 
and sinus signs and 
symptoms

High efficacy of phage 
therapy against biofilm-
related chronic infections

(Ooi et al. 2019; 
Bessembayeva 
et al. 2024)

Diabetic Foot 
Ulcer

S. aureus Methicillin, 
vancomycin

Diabetic foot 
ulcers

Up to 70% of patients 
made a complete 
recovery

High efficacy exhibited by 
phage therapy in the 
treatment of MDR bacterial 
infection with or without 
standard care

(Wittebole and 
Opal 2020)

Diabetic Leg 
Infection

K. pneumoniae Carbapenem, 
cephalosporins, 
ciprofloxacin

Diabetic leg 
infection

Complete recovery 
after multiple 
unsuccessful 
antibiotic courses

Emphasis on the 
administration of phage 
therapy for deep treatment 
and chronic infections 
resistant to traditional 
antibiotics

(Taha et al. 
2019)

Burn Wound 
Infection

E. coli, K. 
pneumoniae, P. 
aeruginosa

Carbapenem, 
penicillins, 
cephalosporins, 
ciprofloxacin

Infected burn 
wounds

Significant decrease in 
the intensity of 
infection and rapid 
wound recovery

High efficacy of phage 
therapy in complicated 
wound infection, and is 
commonly intolerant to 
traditional antibiotics

(Jault et al. 
2019)

Cystic Fibrosis P. aeruginosa Carbapenem Chronic 
respiratory 
infection

Reduced bacterial 
count and enhanced 
pulmonary function

Phages were utilized as 
precision medicine, 
suppressing biofilm-related 
resistance mechanisms

(Law et al. 2019; 
Tamma et al. 
2022)
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modification of the resistant mechanism, and offer novel bactericidal 
approaches (Tabassum et al. 2024; Elshobary et al. 2025).

3.1 Synthesis and Characterization of NPs

The formation and characterization of NPs involve a cascade of precise 
biological, physical, and chemical operations to control the 
composition, shape, and size measurements based on nanoscale 
(Joudeh and Linke 2022; Akhreim et al. 2024). Synthesis of NPs is led by 
several techniques such as the sol-gel process, chemical reduction, 
green synthesis, and hydrothermal (Bokov et al. 2021; Patil et al. 2021). 
Agglomeration is inhibited, and conformity is ensured during the 
process of NPs formation; moreover, practicality, along with chemical 
and physical properties, are characterized after synthesis (Joudeh and 
Linke 2022). For characterization of NPs, technologies, such as 
Transmission electron microscope (TEM), which is used to determine 
the size and shape, Dynamic light scattering (DLS) for particle size 
analysis and measure zeta potential, X-ray diffraction (XRD) to study 
crystalline structure, and Fourier-transform infrared microscopy to 
determine surface functional groups of NPs have been used 
(Mongkolsuttirat and Buajarern 2021; Eid 2022; Filippov et al. 2023; 
Shukla et al. 2023). Therefore, these techniques serve an in-depth 
comprehension of NPs properties, ensuring their utilization in 
ecosystem restoration, medical systems, electronics, energy, and other 
fields.

3.3 Mechanisms of Action

Many fundamental mechanisms make the NPs a more promising 
therapeutic agent against antibiotic-resistant bacteria than conventional 
antibiotics, as mentioned in Fig. 2. For instance, the unique mechanism 
of traditional antibiotics to target the formation of bacterial cell 
membranes or protein synthesis increased their efficacy at first, but 
later became less effective due to gene transfer, and the adaptable 
nature of bacteria led to the development of resistance (Baran et al. 
2023). On the other hand, nanoparticle-dependent strategies represent a 
wide range of non-specific mechanisms of action, including the 
induction of oxidative stress and membrane degradation, as mentioned 
in Table 2, with little probability of blockage by resistance mechanisms 
(Anand et al. 2022). Moreover, weak penetration and modified bacterial 
conditions make traditional antibiotics less effective against biofilms 
(Singh et al. 2022). However, target delivery and the power to pass 
through the extracellular matrix enhanced the biofilm-degradation 
capabilities of nanomaterials (Birk et al. 2021). Furthermore, traditional 
antibiotics are limited by non-flexible chemical structures and exclusive 
function, whereas high chemical reactivity, composition, and tunable 
size make the nanoparticles multifunctional (Cheesman et al. 2017; 
Coates et al. 2020; Kamble et al. 2022; Siwal et al. 2022; Zhu et al. 2022). 
The excessive production of reactive oxygen species (ROS) is one of the 
main mechanisms induced by nanoparticles to combat antibiotic-
resistant bacterial infections. Nanoparticles trigger the synthesis of 
highly reactive oxygen species, including hydrogen peroxide (H2O2), 
hydroxyl radicals (•OH), and superoxide ions, causing biological 
membranes, proteins, and DNA degradation and, ultimately, bacterial 
cell death (Mammari et al. 2022). For instance, silver nanoparticles (Ag 
NPs) and Titanium dioxide nanoparticles (TiO2 NPs) oxidized and 
disrupted the lipid bilayers of bacteria through changes in permeability 
and discharge of cytoplasmic components (Al-Sa'ady and Hussein 2020; 
Bekele and Alamnie 2022). Similarly, zinc oxide nanoparticles (ZnO 
NPs) inhibited the activity of bacterial enzymes essential for metabolic 
processes through the oxidation of amino acids, especially methionine, 

cysteine, and tyrosine (Krishnamoorthy et al. 2022; Iqbal et al. 2024a).

Moreover, Nanoparticles can disrupt the biological membranes of 
MDR bacteria through electrostatic interactions, physical disruption, 
lipid peroxidation, and fluidity modification. For example, the positive 
surface charges of silver nanoparticles (Ag NPs) interacted 
electrostatically with the negatively charged teichoic acids of Gram-
positive bacteria and lipopolysaccharides of Gram-negative bacteria, 
leading to enhanced permeability, discharge of cellular contents, and 
ultimately, bacterial death (Dakal et al. 2016; Häffner and Malmsten 
2017; Iqbal et al. 2024b). In another study, sharp edges or cylindrical 
configuration of graphene oxide (GO) and carbon nanotubes (CNTs) 
degraded the lipid bilayer by creating pores that ultimately led to 
osmotic imbalance, discharge of cellular content, and bacterial cell 
rupture (Baek et al. 2019). Furthermore, unique properties of 
nanoparticles enable them to degrade or block biofilm synthesis. For 
instance, Ag NPs and copper nanoparticles (Cu NPs) degraded the 
extracellular matrix of biofilms, altered structural integrity, and 
removed the shield against antibiotics at 200 ppm (Lange et al. 2021). 
Moreover, GO directly disrupted bacterial cell membranes through 
penetrating biofilms and, hence, increased antibiotic permeability in E. 
coli, S. aureus, and C. albicans by 90.36%, 91.72%, and 91.17%, 
respectively (Elbasuney et al. 2023).

Additionally, the application of traditional antibiotics in 
combination with nanoparticles represents beneficial impacts, including 
biofilm elimination, lessening the standard antibiotic doses, and 
reducing the development of resistance mechanisms (León-Buitimea et 
al. 2022). Clinical investigations indicate that nanoparticles are 
employed as carriers for antibiotic delivery, enhancing their chemical 
stability and controlled release, thus reducing the required 
concentrations and also the off-target side effects (Nazli et al. 2022). For 
example, synergistic effects of GO NPs and ciprofloxacin caused 
significant biofilm disruption in P. aeruginosa (Li et al. 2024). 
Furthermore, ampicillin disrupted the bacterial cell membrane, 
resulting in increased drug delivery and its effectiveness in MDR P. 
aeruginosa when combined with Ag NPs (Khalil et al. 2021). Hence, 
continued experimentation and technological advancements in 
nanomaterials for multidrug-resistant bacteria signify a paradigm shift 
in tackling the challenges of conventional antibiotics, and hence 
demonstrate their potential to transform the future of antibacterial 
therapeutic regimens.
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Fig. 2. Mechanisms of action of nanoparticles against MDR 
bacteria, including cell membrane degradation, oxidative 
stress generation, DNA fragmentation, and protein and 
enzyme denaturation
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4. Natural Antimicrobials

Natural antimicrobials are biologically and chemically active 
components that originate from natural sources and are known for their 
antimicrobial properties against a wide variety of microorganisms 
(Abdallah et al. 2023; Deshmukh and Gaikwad 2024). These bioactive 
substances can be derived from heterogeneous origins, comprising 
animals (lactoferrin, magainins, cecropins), plants (phenols, flavonoids, 
alkaloids, terpenes, essential oils), microorganisms (penicillin, 
bacteriocins, nisin), and minerals (Gupta et al. 2021; Abd El-Hack et al. 
2023; Cheruvari and Kammara 2024; Hilal et al. 2024; Hendiani et al. 
2025). Natural antimicrobials have been an integral part of conventional 
healthcare practices employed for control and prevention of infection, 
wound repair, for packaging, cleaning, and sterilizing procedures, 
decades before synthetic antibiotics became known (Qadri et al. 2022; 
Biswal et al. 2023; Guo et al. 2023). However, their medicinal restorative 
properties have also been recognized in advanced healthcare systems, 
especially with the escalating crisis of antibiotic resistance (Huang et al. 
2021). These natural antimicrobials have exhibited many different 
mechanisms to overcome multidrug-resistant bacteria, including 
degradation of bacterial membranes, metabolic disruption, suppressing 
biofilm formation, and hindering quorum sensing (Nourbakhsh et al. 
2021; Chaieb et al. 2022; Shamim et al. 2023). Furthermore, they reduce 
the possibility of the emergence of resistance through multiple modes 
of action. Natural antimicrobials can be utilized as an efficient 
alternative or complementary therapy for controlling and preventing 
resistant infections, when administered alone or in combination with 
traditional antibiotics.

4.1 Plant-based antimicrobials

There is a wide range of bioactive components in the medicinal plants 
that promise significant bacteriostatic and bactericidal activities against 
various MDR bacterial strains due to their promiscuous nature, as 
mentioned in Fig. 3 (Silva et al. 2021; Sharifi-Rad et al. 2022; Díaz-
Puertas et al. 2023). This multifaceted ability of phytochemicals 
interferes with the development of resistant mechanisms in the bacteria 
and signifies their application as precursors for the production of 
antibiotics to handle such infections (Gadisa et al. 2019; Álvarez-
Martínez et al. 2020; Rashid et al. 2024). The antibacterial mechanisms 
exhibited by phytochemicals are different from those of antibiotics, 
including inhibition of quorum-sensing, adhesion, penetration, motility, 
induction of oxidative stress, and degradation of the bacterial 

53 ISSN: 2584-0479

Approaches to overcome antibiotic resistance Kousar et al. 2025

Table 2 Mechanisms of action of various NPs against a broad range of MDR bacteria

Nanoparticles 
(NPs) Antibiotic-resistant bacteria Mode of action References

Ag NPs S. pneumoniae Oxidative stress generation, bacterial membrane 
degradation

(Al-Sa'ady and Hussein 2020; 
Bekele and Alamnie 2022)

ZnO NPs E. coli, P. aeruginosa, Salmonella 
typhi, Serratia marcescens, K. 
pneumoniae, Proteus mirabilis

Enzyme activity inhibition by the oxidation of amino 
acids

(Krishnamoorthy et al. 2022)

GO NPs P. aeruginosa Oxidative stress generation, DNA fragmentation (El-Kaliuoby et al. 2025)

Ag NPs E. coli Bacterial membrane disruption through electrostatic 
interactions

(Dakal et al. 2016; Häffner 
and Malmsten 2017)

GO NPs E. coli Bacterial cell membrane degradation through pore 
formation

(Baek et al. 2019)

Au NPs E. coli Bacterial cell membranes' functional disability (Chavan et al. 2020)

Ag NPs E. coli, S. aureus Biofilm degradation (Lange et al. 2021)

GO NPs S. aureus, C. albicans, E. coli Biofilm degradation (Elbasuney et al. 2023)

Au NPs S. aureus Bacterial cell wall degradation (Sadeghi et al. 2024)

Ag NPs P. aeruginosa Bacterial cell membrane degradation (Khalil et al. 2021)

GO NPs P. aeruginosa Biofilm synthesis inhibition (Li et al. 2024)

Ag NPs K. rosea, S. sciuri, S. lentus Biofilm synthesis inhibition, quorum sensing 
disruption, oxidative stress generation, bacterial cell 
membrane degradation, and efflux pumps disruption

(Ali et al. 2024)

Fig. 3. Plant-based, algae-based, and animal-based 
antimicrobials that exhibit bactericidal and bacteriostatic 
activity against MDR bacteria
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membrane, as mentioned in Table 3. Moreover, the synergistic effects of 
phytochemicals and antibiotics also proved beneficial in controlling and 
managing resistant bacterial infections (Gonçalves et al. 2023). Biofilm 
is one of the main factors developing resistance to antibiotics and is 
associated simultaneously with many other resistance processes, 
including interference with penetration and inactivation of antibacterial 
components in the biofilm, reduced bacterial growth, regulated efflux 
pump, and apoptosis (Saxena et al. 2019; Bagheri et al. 2024).

MDR bacteria are targeted by phytochemicals through inhibiting 
the synthesis of biofilms. For example, 20 mg/ml aqueous extract of 
Aloe vera hindered the growth of biofilm in methicillin-resistant S. 
aureus (Saddiq and Al-Ghamdi 2018). Similarly, the synthesis of biofilm 
and its related proteins was hindered in S. aureus when treated with 
Aloe-emodin, which is a component originating from Aloe vera (Xiang 
et al. 2017). Furthermore, plant bioactive components inhibit the growth 
of MDR bacteria through cell membrane disruption. For instance, 
Phenols derived from Psidium guajava L. cause the breakdown of lipid 
bilayers by making holes in them and promote the discharge of 
intracellular content. This breakdown led to considerable inhibition of 
biofilm growth, enzyme activity, nucleic acid and toxin synthesis in 
Bacillus subtilis, S. aureus, E. coli, P. aeruginosa, and S. faecalis (Soliman et 
al. 2016; Takó et al. 2020). Similarly, oxidative stress generation, protein 
and enzyme denaturation, and biofilm suppression were induced by 
glabridin in methicillin-resistant S. aureus.

4.2 Algae-based antimicrobials

Nowadays, researchers focus on the aquatic sources to identify their 
antimicrobial activities, especially against MDR bacteria (Song et al. 
2021). For instance, marine algae serve as a vital food source for aquatic 
animals and a renewable resource for Homo sapiens (Hannan et al. 2020).  
Moreover, the bioactive substances of marine algae make it a promising 
therapeutic agent (Song et al. 2021). There are two types of marine 
algae: microalgae and macroalgae, inhabiting almost all of the 
ecosystems of the world. It is estimated that 164,000 species of 
macroalgae and microalgae are present, and 9,800 of them are marine 
inhabitants (El-Beltagi et al. 2022). However, macroalgae are reported as 
a potential antibiotic alternative to combat both gram-positive and 
gram-negative bacteria, both in clinical studies and living environments 
(Lauritano and Ianora 2018). Red algae, brown algae, and green algae 
are also known as Rhodophyta, Phaeophyta, and Chlorophyta, respectively, 
are the three main categories of marine algae classified based on types 
of pigment (de Borba Gurpilhares et al. 2019). Marine algae are the 
source of a broad spectrum of antimicrobial substances and minerals, 
particularly brown algae such as fucoidans, laminarins, and alginates. 
Moreover, a diverse range of polyphenols is also present, such as 
benzoic acids, catechins, cinnamic acid, flavonoids, ligands, 
anthraquinones, quercetin, and phlorotannins (Pina-Pérez et al. 2017; 
Gómez-Guzmán et al. 2018; Tahir et al. 2024).

Targeting bacterial cells and biofilms are the main bactericidal 
strategies demonstrated by marine algae against MDR bacteria. For 
example, 80% suppression of biofilm synthesis and bacterial growth 
was reported in methicillin-resistant S. aureus when treated with brown 
algae extracts of two species, Fucus serratus and Fucus vesiculosus 
(Higgins et al. 2019). Similarly, poultry-associated foodborne pathogens 
responsible for salmonellosis are S. Typhimurium, as well as S. 
Enteritidis. The abundant use of antibiotics has been attributed to the 
development of resistance by the new drug-resistant strains of 
Salmonella (Kulshreshtha et al. 2020). Methanolic extract from Padina 

gymnospora (brown algae) greatly inhibited S. typhimurium with zones 
of 27 mm (Pina-Pérez et al. 2017), while red seaweed aqueous extracts 
from Chondrus crispus and Sarcodiotheca gaudichaudii potentially 
inhibited S. Enteritidis at a 15 µg/mL MIC value (Kulshreshtha et al. 
2020). Moreover, extracts derived from Padina as well as Ulva species 
exhibited bacteriostatic activities against Bacillus cereus, Listeria 
monocytogenes, and S. aureus at concentrations below 500 µg/mL 
(Dussault et al. 2016). Strong antibacterial properties against B. cereus, S. 
aureus, Enterococcus faecalis, and L. monocytogenes were observed upon 
treatment with crude extracts derived directly from Ulva intestinalis. 
The range of the registered MIC and MBC values was from 256 to 512 
µg/mL (Srikong et al. 2017).

4.3 Animals-based antimicrobials

Animal-based antimicrobials are naturally occurring substances 
originating from animals with the power to combat microbial 
pathogens, including antibiotic-resistant bacteria. Because of their 
ability to offer substitute or supplemental treatments to standard 
antibiotics, these antimicrobials are gaining a large amount of interest 
as several customary antibiotics are, to an increasing extent, becoming 
less effective due to resistance. Antimicrobial peptides (AMPs), a 
variety of enzymes such as lysozyme, along with several proteins like 
lactoferrin, are included within animal-based antimicrobial agents; all 
of these agents have shown potential in inhibiting the growth of 
antibiotic-resistant pathogens. For example, cathelicidins and defensins 
are among the AMPs synthesized by many animal species and 
represent bacteriostatic and bactericidal activity against multidrug-
resistant bacteria. The mechanism of action exhibited by these 
antibacterial agents is damaging cell membranes, interfering with the 
synthesis of the cell wall, and inhibiting protein synthesis. Furthermore, 
there are some other distinct modes of action. It includes strengthening 
host immunity against infection and binding of antimicrobials to 
essential metals vital for the growth and proliferation of bacteria, for 
instance, binding of lactoferrin to iron. Hence, animal-based 
antimicrobials serve as a promising therapeutic agent and to develop 
new medicinal therapies to overcome the infections induced by 
resistant bacterial strains.

Magainin-2 is an animal-based AMP derived from the skin of 
Xenopus laevis that disturbs the integrity of the bacterial cell membrane 
by making toroidal pores in it, leading to leakage of intracellular 
contents and ultimately, cell death. Magainin-2 tested against E. coli, 
carbapenem-resistant Klebsiella pneumoniae, methicillin-resistant S. 
aureus, P. aeruginosa, and A.  baumannii with an MIC range of 80-160 
mg/L (Denardi et al. 2022). Similarly, cathelicidin isolated from the 
Alligator mississippiensis exhibited strong bactericidal activity by altering 
the membrane permeability of multidrug-resistant A. baumanii and 
carbapenem-resistant K. pneumoniae at 300 μg/ml (Barksdale et al. 
2017). Moreover, APs Epinecidin-1 isolated from Epinephelus coioides 
and human Beta-Defesin-3 showed strong antibacterial activity with 
MIC values ranging from 4-16 mg/L when tested against in 
carbapenem-resistant K. pneumonia, K. aerogenes, P. aeruginosa, and A. 
baumanii and methicillin-resistant S. aureus. Lastly, 5L and 6L are 
LfcinB6-derived peptides naturally present in Bovine lactoferrin 
showed significant antibacterial activity with MIC values of 4 µg/ml 
when tested against Tetracyclin-resistant strain (E007) and Vancomycin-
resistant strains (WC176 and C68) of Enterococcus faecium. It caused cell 
membrane depolarization, ATP leakage, suppression of biofilm 
synthesis, and disruption in metabolic cycles (Mishra et al. 2022).
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5. Conclusion

The rapidly growing threats of antibiotic resistance call for prompt and 
novel treatment strategies. Phage therapy, NPs, and natural 
antimicrobials are potential substitutes to traditional antibiotics 
through a distinct mode of action to fight MDR bacteria. Phage therapy 
offers concrete antibacterial actions, while NPs promote improved 
absorption and targeted drug delivery. A broad range of bioactive 
components has the power to suppress the resistance mechanism of 
MDR bacteria. Collectively, crises associated with antibiotic resistance 
emphasize on increased demand for the implementation of these 
alternative therapeutic and multidisciplinary pathways to combat 
antibiotic resistance in the future. Long-term research, scientific 
validation, and administrative uphold are vital to transform these new 
techniques into pragmatic and efficient approaches, and defend the 
healthcare system worldwide in the post-antibiotic age.
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