

Letters in Animal Biology

Journal homepage: www.liabjournal.com

Diarrheal pathogens in calves: Rotavirus and co-infection with Coronavirus and Norovirus in selected provinces of Iran

Negar Hemmati ¹, Mohammad Mehdi Ranjbar ², Bahman Abedi Kiasari * ¹, Farzaneh Davari ¹, Hesamoddin Ahmadi Afzadi ¹

- ¹ Department of Microbiology and Immunology, University of Tehran, Tehran, Iran
- ² Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran

Article info Received: 20 July 2025 Received in revised form: 01 October 2025 Accepted: 08 October 2025 Published online: 20 October 2025

Keywords Rotavirus

Co-infection Calf diarrhea Coronavirus Norovirus Risk factors

* Corresponding author: Bahman Abedi Kiasari Email: abedikiasari.b@ut.ac.ir

Reviewed by:

Praveen Kumar

Department of Veterinary Microbiology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar-125004 (Haryana) India

Abstract

Calf diarrhoea is a leading cause of mortality and morbidity among neo-natal calves in the cattle industry, with viral pathogens such as bovine rotavirus (BRoV), bovine coronavirus (BCoV), and bovine norovirus (BNoV) playing prominent roles. Present study investigated the occurrence and co-infection pattern of BRoV, BCoV, and BNoV in diarrheic calves in seven main livestockproducing provinces of Iran. A total of 320 fecal samples from diarrheic calves were examined with ELISA and RT-PCR. The results revealed that BRoV was the most prevalent pathogen (68.8%), followed by BCoV (56.5%), and BNoV (25.9%). The most common co-infections were BRoV+BCoV (22.5%) and BRoV+BNoV (12.5%), whereas 6.9% cases revealed triple infection. Notably, BNoV mono-infection was rare (1.6%), suggesting its limited pathogenic role singlehandedly but with a potential synergistic effects in co-infections. BRoV detection rate was significantly higher during colder months (77.9%), whereas no clear seasonal patterns were observed for BCoV and BNoV. The study revealed intensive management systems as a significant risk factor for BRoV infection. These findings expound the complexity of viral enteric diseases in calves and emphasize the need for specific management and control strategies. Further investigations are recommended to examine the interactions of viruses, genetic variations, and potential zoonotic risk of these viruses.

This is an open access article under the CC Attribution license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Calf diarrhea is a common and multifaceted health problem that poses formidable health and economic issues in the animal husbandry sector, mostly within the initial weeks of a calf's life (Carter et al. 2021). Research results indicate that acute diarrhea causes over 50% of neonatal mortality among dairy calves and substantially contributes adverse to early growth and weight gain, and induces prolonged reproductive losses and poor productivity (Jessop et al. 2024; Potter 2011). Although infectious agents carry the greatest blame, nutrition, management practices, and environmen can aggravate the calf diarrhea (Gichile 2022). Among the viral pathogens, Bovine Rotavirus (BRoV) is known to be the predominating etiological agent of calf diarrhea, particularly in dairy farms (Geletu et al. 2021). BRoV is a doublestranded RNA virus within the Reoviridae family with a three-layered capsid and an eleven-segment genome. The virus is primarily transmitted through the fecal-oral route and preferentially infects the epithelial cells lining the intestinal villi, causing malabsorption, dehydration, and watery diarrhea (Lockhart et al. 2022). The zoonotic potential of BRoV has been increasingly recognized due to antigenic and genetic similarities between viral strains isolated from animals and humans (Geletu et al. 2021). The symptoms can vary between subclinical infection to acute enteritis and mortality, mostly impacting calves below eight weeks of age, with increased detection during colder

months (Dhama et al. 2009; Patel et al. 2013). So far, specific antiviral therapy is not known to exist, and care is mostly supportive (Maclachlan and Dubovi 2010; Murphy 1999).

Bovine Coronavirus (BCoV), another significant cause of enteritis among calves, belongs to the Betacoronavirus genus within the Coronaviridae family (Vlasova and Saif 2021). BCoV can infect calves between the period of their birth and three months of life, with highest infection rate in calves between the age of 1 to 2 weeks (Seid et al. 2020). The virus damages absorptive cells of the small and large intestine, causing outcomes identical to the BRoV infection, including malabsorption, electrolytic disturbance, and dehydration. Environmental contamination and vertical transmission through infected dams add to its infective capability (Seid et al. 2020; Vlasova and Saif 2021). Furthermore, bovine Noroviruses (BNoV) are new emerging pathogens of the intestine that have been found across various nations and are associated with prolonged diarrhea, with its occurrence being typically seen between 2-5 days post-infection (Guo et al. 2018). The viruses disseminate through the fecal-oral route and cocirculate with multiple other viruses of the intestine. Despite their widespread presence and established pathogenic capability, BNoV are significantly less studied than BRoV and BCoV, particularly concerning their role in co-infections. Lack of epidemiological and molecular data, specifically within areas such as Iran, is an important knowledge gap relating to dynamics of disease that affect neonatal calves (Castells et al.

2020; Guo et al. 2018). A myriad of studies showed that co-infections comprising BRoV, BCoV, and BNoV are frequent and complicate diagnostic and treatment interventions with profound negative health outcomes (Cho and Yoon 2014; Mohteshamuddin et al. 2020). Much of the available research, however, has been individual-pathogen oriented, and therefore very limited data are available relating to molecular epidemiology of co-infections, specifically in animal systems within Iran (Delling and Daugschies 2022; Mohteshamuddin et al. 2020).

Considering the economic significance of the livestock sector in Iran and higher prevalence of enteric disease, studying occurrence of BRoV and its co-infections with BCoV and BNoV at molecular level represents a key step to developing prevention and control strategies. Tehran, Qazvin, Hamadan, Qom, Golestan, and Alborz provinces were chosen here because of their productive livestock activities (Pourasgari et al. 2016). Despite numerous global studies, limited data exist on the molecular epidemiology of these pathogens in Iran's livestock systems, particularly regarding co-infections. Therefore, the aim of this study was to determine the molecular detection rate and co-infection patterns of BRoV, BCoV, and BNoV in neonatal calves across major livestock-producing provinces in Iran. Understanding these patterns is vital for developing targeted prevention and control strategies to reduce calf mortality and improve herd health.

2. Materials and Methods

2.1 Description of the study area

This study was conducted between October 2023 to May 2024 across seven major livestock-producing provinces of Iran: Tehran, Alborz, Qom, Qazvin, Golestan, Hamadan, and Kermanshah. Fourteen industrial and semi-industrial dairy farms, selected to represent a range of production scales, were included. These provinces span diverse climatic zones, ranging from semi-arid (Tehran, Qazvin, Kermanshah) and desert (Qom) to humid subtropical (Golestan) and mountainous cold (Hamadan) regions, providing ecological variability relevant to pathogen distribution and transmission dynamics.

2.2 Study design and study population

A cross-sectional design was applied. In the intensive and semiintensive managed target farms Holstein friesian calves of either sex up to 90 days of age were clinically examined for signs of diarrhea, dehydration, and lethargy and fecal samples were collected for diagnostic testing. Relevant information for each calf was recorded using the appropriate registration form.

2.3 Sampling technique and sample size determination

A total of 320 diarrheic samples were collected from calves, the distribution of samples across the provinces was as follows: 120 samples from Tehran, 32 from Qom, 52 from Qazvin, 76 from Alborz, 8 from Golestan, 8 from Hamadan, and 24 from Kermanshah. In large-scale farms (>200 head), at least 10% of the calves were randomly selected for sampling. In small-scale (<50 head) and medium-scale (50–200 head) farms, a cluster sampling method was employed. The sampling framework was designed and implemented based on records maintained by dairy cooperatives in each province. The sampling distribution was proportionate to the size of the farm population and previous regional reports of diarrheal incidence to enhance the accuracy of the study and allow for comparisons of disease occurrence across farms of different sizes. All the collected samples were included in the final analysis. This approach ensured a more precise and

scientifically robust assessment of disease occurrence.

2.4 Collection and preparation of fecal samples

Diarrheal fecal samples were collected after cleaning the anus and performing rectal stimulation. Approximately 50 grams fecal material was directly obtained from the rectum of calves. The collected samples were placed in containers with ice packs and transported to the virology laboratory at the Faculty of Veterinary Medicine, University of Tehran. The samples were stored at –80°C until further processing. For sample preparation, 10% suspension of fecal samples were prepared in phosphate-buffered saline (PBS) and homogenized using a mortar. Then, 100 μL of the fully homogenized suspensions were transferred into 1.5 mL microtubes. The microtubes were centrifuged at 3000 rpm for 15 minutes at 4°C and the supernatants were used for the assays.

2.5 Viral isolation

A representative subset of 15 fecal samples that tested positive for BRoV only by RT-PCR were subjected to viral isolation, given the known ability of BRoV to be cultured in vitro. Samples were clarified by centrifugation and filtration (0.45 µ) before inoculation onto Vero cell monolayers. Cultures were maintained at 37°C with 5% CO2 in Dulbecco's Modified Eagle Medium (DMEM; Gibco, USA) supplemented with 2% heat-inactivated fetal bovine serum (FBS), 1% penicillin-streptomycin, and 1% L-glutamine. For viral adsorption, inoculates were incubated with Vero cells for 1 h at 37 $^{\circ}$ C, after which the cultures were maintained in serum-free DMEM containing 10 µg/ mL trypsin to facilitate viral replication. Control flasks were included in which no inoculum was added. Cultures were monitored daily for the development of cytopathic effects (CPE) for up to 48 h, including cell rounding, detachment, and monolayer disruption. suspected positive cultures were subjected to two blind passages to confirm viral replication. Due to the limited or no in vitro growth capacity of BCoV and BNoV in standard cell culture systems, viral isolation was not attempted for these pathogens.

2.6 Immunoassay (ELISA)

Bovine rotavirus antigen was screened using a validated commercial ELISA kit (BIO-X Diagnostics, Belgium), following the manufacturer's instructions. This method was selected due to its diagnostic relevance and proven field utility. This ELISA kit has been validated for bovine fecal samples and provides reliable sensitivity and specificity under field conditions (Hamedian-Asl et al. 2022; Mayameei et al. 2010). ELISA was not performed for bovine coronavirus or norovirus owing to the lack of commercially available and validated antigen detection kits for these viruses in bovine fecal samples.

2.7 Molecular analysis

Total viral RNA was extracted from fecal samples using RNAplus reagent (SinaGen Inc., Iran) according to the manufacturer's protocol. cDNA synthesis was conducted using the PrimeScript RT Reagent Kit (SinaClone, Iran). The extracted RNA was screened for BRoV using a specific primer pair targeting the VP6 gene. To detect potential coinfections with other major diarrheagenic viruses, previously established and validated RT-PCR assays in our laboratory were employed for BNoV and BCoV. The primer pairs for these viruses target conserved regions of the RNA-dependent RNA polymerase (RdRp) gene for BNoV and the nucleocapsid (N) gene for BCoV (Table 1). RT-PCR assays used had been previously validated in our laboratory using known positive control samples and sequencing-confirmed

Table 1. RT-PCR conditions for the detection of BRoV, BCoV, and BNoV									
Virus	Primer	Primer sequence $(5' \rightarrow 3')$	Position (nt) & Target gene	Amplicon size	Annealing Temperature (°C)	Reference			
Bovine Rotavirus	VP6-F3	GACGGVGCRACTACATGGT	737-755 (VP6 gene)	~379 bp	50 °C	(Di Bartolo et al. 2011; Gouvea et al. 1990)			
	VP6-R3	GTCCAATTCATNCCTGGTG	1116-1098 (VP6 gene)	~379 Up					
Bovine Coronavirus	BCoV-F	ACTCAATGGTGATGTTGGTG	508-527 (N gene)	~407 bp	55 °C	(Socha et al. 2022; Takiuchi et al. 2006)			
	BCoV-R	CAGGAGAGGTGACACATAGC	914-895 (N gene)	~407 бр					
Bovine Norovirus	BNoV-F	GGGAGGCGATCGCAATCT	4570–4588 (RdRp)	~327 bp	F2 %C	(Di Bartolo et al. 2011;			
	BNoV-R	CCTTAGACGCCATCATCATCATT	4896–4874 (RdRp)	~327 bp	52 °C	Otto et al. 2011)			
BRoV: Bovine Rotavirus; BCoV: Bovine Coronavirus; BNoV: Bovine Norovirus; nt: Nucleotides									

reference strains (virology lab., university of Tehran). Negative controls (nuclease-free water) were included in each run to monitor contamination.

PCR products were visualized on 1% agarose gel prepared in TBE buffer (containing Tris base, boric acid, and EDTA) and stained with ethidium bromide. The buffer pH was adjusted to 8. Electrophoresis was conducted at 90 V for 55 minutes. A 100 bp Plus DNA Ladder (GeneRuler, Thermo Fisher Scientific, Germany) was used as a molecular size marker. Samples exhibiting bands corresponding to the expected amplicon sizes (~379 bp for BRoV, ~327 bp for BNoV, and ~407 bp for BCoV) were considered positive.

2.8 Epidemiological data collection & statistical analysis

For each calf, individual metadata – including sex, age, season of sampling, and province of origin were recorded. Additional farm-level factors such as housing system (intensive or semi-intensive) and colostrum intake quality were also recorded through structured interviews with farm personnel and direct field observation. Descriptive statistics summarized detection rates, with categorical variables expressed as frequencies and percentages. Associations between risk factors and viral occurrence were assessed using chisquare or Fisher's exact tests (p < 0.05). All analyses were performed using SPSS (IBM.SPSS.27).

3. Results

To validate the specificity of the RT-PCR results, the amplicons were visualized on agarose gels. Clear bands of the expected sizes for BRoV (379 bp), BCoV (407 bp), and BNoV (327 bp) were observed, indicating successful amplification of the target genes and validating the reliability of the molecular detection (Fig. 1).

Cytopathic effects indicative of rotavirus infection in Vero cell cultures were observed after 48 hours, including cell rounding, detachment, and monolayer disruption. However, uninfected control cultures maintained normal morphology (Fig. 2).

Among 320 fecal samples tested with ELISA, 220 (68.8%) were positive for BRoV antigen. The mean optical density of the positive samples (1.20 \pm 0.29) was significantly higher than that of the negative samples (0.10 \pm 0.05). A boxplot clearly illustrates the distribution of OD values, with a cut-off of 0.3 separating most positive samples from the negatives (Fig. 3).

Laboratory analysis revealed a high burden of viral enteric pathogens, with many samples exhibiting co-infection by more than one virus. The overall detection rates for each pathogen, regardless of co-infection, were as follows; BNoV 83/320 (25.9%), BCoV 181/320

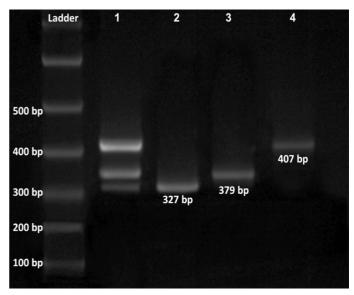


Fig. 1. Agarose gel electrophoresis of RT-PCR products. Lane 1: Positive control (BRoV, BCoV, BNoV); Lane 2: BNoV (~327 bp); Lane 3: BRoV (~379 bp); Lane 4: BCoV (~407 bp); 100 bp DNA ladder

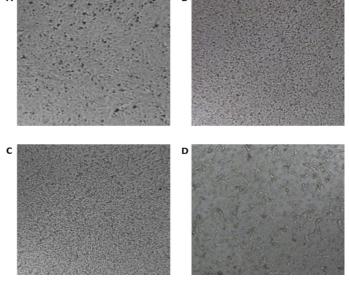


Fig. 2. Cytopathic effects of Rotavirus infection in Vero cell culture

Panel A displays uninfected, healthy cells with normal morphology, while
panel B shows cells infected with rotavirus, although no significant
cytopathic effects (CPE) are yet visible at this early stage. Panel C depicts
uninfected cells at 48 hours, where increased confluency and minor cell
death are observed due to overgrowth. In contrast, panel D shows infected
cells at 48 hours post-infection, where clear cytopathic effects are evident,
including cell rounding, detachment, and loss of monolayer integrity

Boxplot of OD Values for Bovine Rotavirus Antigen 2.0 0 1.5 0.0 Positive Rotavirus Antigen ---- Cut-off (0.3)

Fig. 3. Boxplot of optical density (OD) values in fecal samples tested for bovine rotavirus antigen (n=320)

A total of 220 samples (68.8%) tested positive, showing significantly higher OD values (mean \pm SD: 1.20 ± 0.29) compared to negative

(56.5%), and BRoV 220/320 (68.7%) (Fig. 4).

The overall detection rate of single infections was 26.9% for BRoV, 22.2% for BCoV, and 1.6% for BNoV across all provinces. However, coinfections were frequent with the combination of BCoV and BRoV exhibiting the highest occurrence at 22.5%, followed by BNoV and BRoV co-infection (12.5%). Triple infections involving all three viruses were detected in only 6.9% of the total samples. These findings highlight the complex etiology of viral enteric infections and the common occurrence of multi-pathogen involvement. Notably, the detection rate of each virus varied across provinces. Among them,

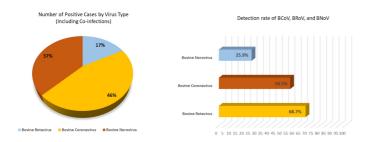


Fig. 4. Occurrence of bovine Rotavirus, bovine Coronavirus, and bovine
Norovirus in diarrheic calves across seven provinces in Iran.
The pie chart illustrates the total percentage of positive cases for each
virus, including co-infections. The bar graph represents the overall
percentage of calves positive for each pathogen, regardless of whether
the infection was single or mixed

Fig. 5. Distribution of co-infections among BRoV, BCoV, and BNoV in diarrheic calves across studied provinces

Golestan, Hamedan, and Qazvin exhibited the highest overall levels of contamination (Table 2, Fig. 5).

While the assessment of epidemiological risk factors, no significant association was observed between the sex of the calves and the detection rates of BRoV, BCoV, or BNoV (p > 0.05). However, a significant seasonal effect was observed on BRoV, with a higher occurrence during the colder months (77.9%) compared to the warmer season (41.3%) (p < 0.05). In contrast, seasonal variation did not significantly influence the detection rates of BCoV or BNoV, although the number of positive samples was higher in the colder seasons. Colostrum intake did not show any significant effect on infection status. Although calves with poor colostrum intake exhibited slightly elevated infection rates for all three viruses, the differences were not statistically significant (p > 0.05). Notably, the type of management system showed a strong association with BRoV occurrence. Calves raised in intensive farming systems had a significantly higher rate of infection (83.8%) compared to those in semi-intensive systems (40.0%) (p < 0.05). However, no such association was found between the management system and the occurrence of BCoV or BNoV (p > 0.05) (Table 3).

4. Discussion

The present study provides the first comprehensive molecular investigation of BRoV, BCoV, and BNoV co-infections in diarrheic calves across multiple livestock-producing provinces of Iran. The dominance of BRoV as an etiological agent, with a detection rate exceeding two-thirds (68.7%) of all samples coupled with its high frequency in mixed infections (>40%), indicates a complicated viral

Virus/ Province	Tehran (n = 120)	Qom (n = 32)	Qazvin (n = 52	Alborz (n = 76)	Kermanshah (n = 24)	Golestan (n = 8)	Hamedan (n = 8)	Total (n = 320)
BRoV+	28 (23.3%)	7 (21.9%)	15 (28.8%)	22 (28.9%)	7 (29.2%)	4 (50.0%)	3 (37.5%)	86 (26.9%)
BCoV+	24 (20.0%)	5 (15.6%)	13 (25.0%)	18 (23.7%)	6 (25.0%)	3 (37.5%)	2 (25.0%)	71 (22.2%)
BNoV+	2 (1.7%)	0 (0.0%)	1 (1.9%)	1 (1.3%)	0 (0.0%)	1 (12.5%)	0 (0.0%)	5 (1.6%)
BRoV+ BCoV+	25 (20.8%)	5 (15.6%)	12 (23.1%)	20 (26.3%)	5 (20.8%)	3 (37.5%)	2 (25.0%)	72 (22.5%)
BCoV+ BNoV+	6 (5.0%)	1 (3.1%)	3 (5.8%)	3 (3.9%)	1 (4.2%)	1 (12.5%)	1 (12.5%)	16 (5.0%)
BNoV+ BRoV+	12 (10.0%)	3 (9.4%)	8 (15.4%)	10 (13.2%)	2 (8.3%)	3 (37.5%)	2 (25.0%)	40 (12.5%)
BRoV+ BCoV+ BNoV+	6 (5.0%)	1 (3.1%)	4 (7.7%)	6 (7.9%)	1 (4.2%)	2 (25.0%)	2 (25.0%)	22 (6.9%)
BRoV: Bovine Rotavirus; BCoV: Bovine Coronavirus; BNoV: Bovine Norovirus								

Table 3. Association between selected risk factors and the occurrence of BRoV, BCoV, and BNoV infections in diarrheic calves									
Risk factor	Bovine Rotavirus			Bovine Coronavirus			Bovine Norovirus		
	Positive	Negative	P-value	Positive	Negative	P-value	Positive	Negative	P-value
Gender									
Male (n=160)	110 (68.8%)	50 (31.2%)	> 0.05	90 (56.3%)	70 (43.8%)	> 0.05	42 (26.3%)	118 (73.8)	> 0.05
Female (n=160)	110 (68.8%)	50 (31.2%)		90 (56.3%)	70 (43.8%)		42 (26.3%)	118 (73.8)	
Season									
Cold (n=240)	187 (77.9%)	53 (22.1%)	< 0.05*	109 (45.4%)	131 (54.6%)	> 0.05	50 (20.8%)	190 (79.2%)	> 0.05
Warm (n=80)	33 (41.3%)	47 (58.8%)		72 (90.0%)	8 (10.0%)		33 (41.3%)	47 (58.8%)	
Colostrum intake									
Well (n=12)	4 (33.3%)	8 (66.7%)	- 0.05	9 (75.0%)	3 (25.0%)	- 0.05	2 (16.7%)	10 (83.3%)	- 0.05
Moderate (n=60)	40 (66.7%)	20 (33.3%)	> 0.05	27 (45.0%)	33 (55.0%)	> 0.05	17 (28.3%)	43 (71.7%)	> 0.05
Poor (n=248)	176 (71.0%)	72 (29.0%)		145 (58.5%)	103 (41.5%)		65 (26.2%)	183 (73.8%)	
Management system									
Intensive (n=210)	176 (83.8%)	34 (16.2%)	< 0.05*	100 (47.6%)	110 (52.4%)	> 0.05	50 (23.8%)	160 (76.2%)	> 0.05
Semi-intensive (n=110)	44 (40.0%)	66 (60.0%)		81 (73.6%)	29 (26.4%)		33 (30.0%)	77 (70.0%)	
BRoV: Bovine Rotavirus; BCoV: Bovine Coronavirus; BNoV: Bovine Norovirus									

environment underlying calf diarrhea with potential implications for disease severity, diagnostic strategies, and control measures. The findings of present study establish BRoV as the most predominant enteric pathogen, which corroborates observations from other national and international studies (Madadgar et al. 2015; Nazaktabar and Madadgar 2020; Ranjbar et al. 2021). The fact that a high detection rate of BCoV (56.5%) and an increasing detection rate of BNoV (25.9%) indicates that calf diarrhea in Iran tends to be caused by multiple factors, thus confirming earlier research that single-pathogen diagnostics may not reflect the true disease etiology (Cho et al. 2013; Cho and Yoon 2014; Kim et al. 2021).

A key strength of this study is the detailed description of coinfection patterns. The most frequent double infection, BRoV + BCoV (22.5%), suggests potential synergistic effects that may aggravate clinical outcomes. Triple infections (6.9%), although less common, are a serious clinical concern owing to their potential in exacerbation of symptoms, diagnosis, and treatment. Similar observations have been made by earlier researchers, who highlighted the diagnostic and therapeutic challenge posed by viral co-infections in neonatal calves (Gomez and Weese 2017; Hou et al. 2025; Tulu Robi et al. 2024). In contrast, the extremely low detection rate of BNoV mono-infection (1.6%) indicates that its pathogenicity may be increased when coinfecting together with other viruses, which is in agreement with other studies from China and Uruguay supporting the hypothesis of BNoV as a passenger virus. Additional pathogenesis studies are needed to clarify its role (Castells et al. 2020; Chen et al. 2022; Qin et al. 2022; Shi et al. 2019; Turan et al. 2018).

The geographical distribution of infections revealed provincial variation. While overall BRoV detection rate did not vary between provinces, some provinces such as Golestan and Hamadan featured disproportionately higher rate of mixed infections and might be accounted for on ecological or management-related grounds. Seasonality played a significant role in the prevalence of BRoV, with higher rates in colder months (77.9%), a pattern also observed globally and ascribed to greater viral stability and susceptibility of calves under cold stress conditions (Kong et al. 2025; Nonnecke et al. 2009). However, BCoV and BNoV lacked significant seasonal correlation, contrary to some other studies and warranting additional ecological modeling (Alotaibi et al. 2022; Mohebbi et al. 2017; Pourasgari et al.

2016; Pourasgari et al. 2018).

Among the risk factors quantified, the management system is the most significant predictor of BRoV prevalence (Uddin Ahmed et al. 2022). In present study, calves reared under intensive systems had very significant infection rates (83.8%) when compared to animals reared under semi-intensive systems (40.0%). Results highlight the potential role of overcrowding, environmental contamination, and absence of biosecurity measures in promoting viral transmission (Fritzen et al. 2019). Surprisingly, neither sex nor colostrum intake was a statistically significant predictor of viral detection, although trends suggested that compromised colostrum quality may increase susceptibility, a theory worthy of exploration using immunoglobulin titration studies. The BRoV detection rate reported here (68.7%) is significantly greater than earlier Iranian estimates (~26-34%) derived from ELISA or limited RT-PCR protocols. These discrepancies may reflect enhanced detection sensitivity, greater sample size, broader geographic representation, or genuine epidemiologic variation over time. Nevertheless, it must be stated that this research targeted diarrheic samples alone and wasn't an entire screening of the overall cattle population, which can also account for the high detection rate. Likewise, the detection rate of BCoV documented herein is consistent with findings from research studies in Argentina and Turkey but greater than local reports previously, which points toward either an increase in prevalence or underreporting in past assessments (Gomez and Weese 2017; Yasir et al. 2023). In contrast, BNoV is less characterized, and while detection rate is quite high in this study, the low mono-infection rate indicates its co-infective nature is more significant than its mono pathogenicity (Castells et al. 2020).

However, there are also limitations to this study. The absence of genotyping or whole genome sequencing constrains the investigation of genetic diversity and zoonotic potential, which is especially relevant to BRoV due to its close genetic similarity with human strains. Also, the lack of quantitative viral load testing precludes the correlation of viral burden with disease severity.

5. Conclusion

The present study demonstrates that calf diarrhea among Iranian dairy operations is commonly multivariate and that BRoV is the dominant pathogen, but BCoV and BNoV have key roles through co-infections. The important connection between concentrated management systems

and infection with BRoV emphasizes the key role of biosecurity, accommodation quality, and farm-level sanitation on disease burden. The seasonal patterns of BRoV also suggest that seasonally specific preventive measures during the cold season might improve calf survival. Longitudinal studies should be prioritized to determine the clinical significance of co-infections, genetic characterization of strains that circulate through dairies, and their zoonotic potential. Integration of molecular epidemiology with management practice and vaccine programs will be important to reducing calf morbidity and mortality, improving productivity, and ensuring public health.

Declarations

Funding: This work was carried out without any specific funding

Conflict of interest: Authors declare that they have no conflicts of interest

Acknowledgements: The authors would like to express their appreciation to all individuals whose efforts, directly or indirectly, contributed to the completion of this research

Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request

References

- Alotaibi MA, Al-Amad S, Chenari Bouket A, Al-Aqeel H, Haider E, Hijji AB, Belbahri L, Alenezi FN. (2022). High occurrence among calves and close phylogenetic relationships with human viruses warrants close surveillance of Rotaviruses in Kuwaiti dairy farms. Frontiers in Veterinary Science 9: 745934. https://doi.org/10.3389/fvets.2022.745934
- Carter HS, Renaud DL, Steele MA, Fischer-Tlustos AJ, Costa JH. (2021). A narrative review on the unexplored potential of colostrum as a preventative treatment and therapy for diarrhea in neonatal dairy calves. Animals 11(8): 2221. https://doi.org/10.3390/ani11082221
- Castells M, Caffarena RD, Casaux ML, Schild C, Castells F, Castells D, Victoria M, Riet-Correa F, Giannitti F, Parreño V. (2020). Detection, risk factors and molecular diversity of norovirus GIII in cattle in Uruguay. Infection Genetics and Evolution 86: 104613. https://doi.org/10.1016/j.meegid.2020.104613
- Chen S, Zhang W, Zhai J, Chen X, Qi Y. (2022). Prevalence of bovine rotavirus among cattle in mainland China: A meta-analysis. Microbial Pathogenesis 170: 105727. https://doi.org/10.1016/j.micpath.2022.105727
- Cho YI, Han JI, Wang C, Cooper V, Schwartz K, Engelken T, Yoon KJ. (2013). Case–control study of microbiological etiology associated with calf diarrhea. Veterinary Microbiology 166(3-4): 375-385. https://doi.org/10.1016/j.vetmic.2013.07.001
- Cho YII, Yoon KJ. (2014a). An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. Journal of Veterinary Science 15(1): 1-17. https://doi.org/10.4142/jvs.2014.15.1.1
- Delling C, Daugschies A. (2022). Literature review: Co-infection in young ruminant livestock—Cryptosporidium spp. and its companions. Pathogens 11(1): 103. https://doi.org/10.3390/pathogens11010103
- Dhama K, Chauhan R, Mahendran M, Malik S. (2009). Rotavirus diarrhea in bovines and other domestic animals. Veterinary Research Communications 33: 1-23. https://doi.org/10.1007/s11259-008-9070-x
- Di Bartolo I, Monini M, Losio MN, Pavoni E, Lavazza A, Ruggeri FM.

- (2011). Molecular characterization of noroviruses and rotaviruses involved in a large outbreak of gastroenteritis in Northern Italy. Applied and Environmental Microbiology 77(15): 5545-5548. https://doi.org/10.1128/aem.00278-11
- Fritzen JT, Oliveira MV, Lorenzetti E, Miyabe FM, Viziack MP, Rodrigues CA, Ayres H, Alfieri AF, Alfieri AA. (2019). Longitudinal surveillance of rotavirus A genotypes circulating in a high milk yield dairy cattle herd after the introduction of a rotavirus vaccine. Veterinary Microbiology 230: 260-264. https://doi.org/10.1016/j.vetmic.2019.02.022
- Geletu US, Usmael MA, Bari FD. (2021). Rotavirus in calves and its zoonotic importance. Veterinary Medicine International 2021(1); 6639701. https://doi.org/10.1155/2021/6639701
- Gichile AG. (2022). Review on the epidemiology of Bovine Rotavirus and its public health significance. International Journal of Veterinary Science and Research 8(1): 005-010. https://doi.org/10.17352/ijvsr.000104
- Gomez DE, Weese JS. (2017). Viral enteritis in calves. The Canadian Veterinary Journal 58(12): 1267-1274.
- Gouvea V, Glass R, Woods P, Taniguchi K, Clark H, Forrester B, Fang Z. (1990). Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. Journal of Clinical Microbiology 28(2): 276-282. https://doi.org/10.1128/jcm.28.2.276-282.1990
- Guo Z, He Q, Yue H, Zhang B, Tang C. (2018). First detection of Nebovirus and Norovirus from cattle in China. Archives of Virology 163: 475-478. https://doi.org/10.1007/s00705-017-3616-6
- Hamedian-Asl M, Zakian A, Azimpour S, Davoodi F, Kahroba H. (2022). Evaluation of diagnostic methods for the detection of Bovine Coronavirus and Rotavirus in faeces of diarrhoeic calves. Journal of the Hellenic Veterinary Medical Society 73(2): 3951-3960. https://doi.org/10.12681/jhvms.23704
- Hou Z, Wang J, Tan B, Zhang S. (2025). A systematic study of Bovine Viral Diarrhoea virus co-infection with other pathogens. Viruses 17(5): 700. https://doi.org/10.3390/v17050700
- Jessop E, Li L, Renaud DL, Verbrugghe A, Macnicol J, Gamsjäger L, Gomez DE. (2024). Neonatal calf diarrhea and gastrointestinal microbiota: etiologic agents and microbiota manipulation for treatment and prevention of diarrhea. Veterinary Sciences 11(3): 108. https://doi.org/10.3390/vetsci11030108
- Kim S, Yu DH, Jung S, Kang J, Park K, Chae JB, Choi KS, Kim HC, Park BK, Chae JS. (2021). Biological Factors Associated with Infectious Diarrhea in Calves. Pakistan Veterinary Journal 41(4): 531-537. http://pvj.com.pk/pdf-files/41_4/531-537.pdf
- Kong F, Zhang X, Xiao Q, Jia H, Jiang T. (2025). Heat shock protein 70 in cold-stressed farm animals: Implications for viral disease seasonality. Microorganisms 13(8): 1755. https://doi.org/10.3390/microorganisms13081755
- Lockhart A, Mucida D, Parsa R. (2022). Immunity to enteric viruses.

 Immunity 55(5): 800-818. https://doi.org/10.1016/j.immuni.2022.04.007
- Maclachlan NJ, Dubovi EJ. (2010). Fenner's veterinary virology. Academic press. Cambridge, Massachusetts, USA.
- Madadgar O, Nazaktabar A, Keivanfar H, Salehi TZ, Zadeh SL. (2015). Genotyping and determining the distribution of prevalent G and P types of group A bovine rotaviruses between 2010 and 2012 in Iran. Veterinary Microbiology 179(3-4): 190-196. https://doi.org/10.1016/j.vetmic.2015.04.024

- Mayameei A, Mohammadi G, Yavari S, Afshari E, Omidi A. (2010). Evaluation of relationship between Rotavirus and Coronavirus infections with calf diarrhea by capture ELISA. Comparative Clinical Pathology 19(6): 553-557. https://doi.org/10.1007/s00580-009-0920-x
- Mohebbi M, Lotfollahzadeh S, Madadgar O, Dezfouli M. (2017). A survey on detection of coronavirus in neonatal calf diarrhea in dairy farms of Iran. Iranian Journal of Veterinary Medicine 11(3): 201-208. https://doi.org/10.22059/ijvm.2017.224201.1004786
- Mohteshamuddin K, Hamdan L, AlKaabi AB, Barigye R. (2020). Cryptosporidium parvum and other enteric pathogens in scouring neonatal dairy calves from the Al Ain region, United Arab Emirates. Veterinary Parasitology: Regional Studies and Reports 21: 100435. https://doi.org/10.1016/j.vprsr.2020.100435
- Murphy FA, Gibbs EPJ, Horzinek MC. (1999). Veterinary Virology. Academic Press. Cambridge, Massachusetts, USA.
- Nazaktabar A, Madadgar O. (2020). Phylogenetic study of VP6 gene of bovine rotavirus a and molecular survey of bovine rotaviruses B and C, and human G and P genotypes of rotavirus A in calves in Iran. International Journal of Enteric Pathogens 8(2): 66-72. https://doi.org/10.34172/ijep.2020.14
- Nonnecke B, Foote M, Miller B, Fowler M, Johnson T, Horst R. (2009). Effects of chronic environmental cold on growth, health, and select metabolic and immunologic responses of preruminant calves. Journal of Dairy Science 92(12): 6134-6143. https://doi.org/10.3168/jds.2009-2517
- Otto PH, Clarke IN, Lambden PR, Salim O, Reetz J, Liebler-Tenorio EM. (2011). Infection of calves with bovine norovirus GIII. 1 strain Jena virus: an experimental model to study the pathogenesis of norovirus infection. Journal of Virology 85(22): 12013-12021. https://doi.org/10.1128/JVI.05342-11
- Patel MM, Pitzer VE, Alonso WJ, Vera D, Lopman B, Tate J, Viboud C, Parashar UD. (2013). Global seasonality of rotavirus disease. The Pediatric Infectious Disease Journal 32(4): e134-e147. https://doi.org/10.1097/inf.0b013e31827d3b68
- Potter T. (2011). Cattle-A systemic approach to calf gastroenteric disease. Livestock 16(2): 23-28. https://doi.org/10.1111/j.2044-3870.2010.00022.x
- Pourasgari F, Kaplon J, Karimi-Naghlani S, Fremy C, Otarod V, Ambert-Balay K, Mirjalili A, Pothier P. (2016). The molecular epidemiology of bovine rotaviruses circulating in Iran: a two-year study. Archives of Virology 161(12): 3483-3494. https://doi.org/10.1007/s00705-016-3051-0
- Pourasgari F, Kaplon J, Sanchooli A, Fremy C, Karimi-Naghlani S, Otarod V, Ambert-Balay K, Mojgani N, Pothier P. (2018). Molecular prevalence of bovine noroviruses and neboviruses in newborn calves in Iran. Archives of Virology 163(5): 1271-1277. https://doi.org/10.1007/s00705-018-3716-y
- Qin YF, Gong QL, Zhang M, Sun ZY, Wang W, Wei XY, Chen Y, Zhang Y, Zhao Q, Jiang J. (2022). Prevalence of bovine rotavirus among Bovidae in China during 1984–2021: a systematic review and meta-analysis. Microbial Pathogenesis 169: 105661. https://doi.org/10.1016/j.micpath.2022.105661
- Ranjbar MM, Enayati S, Lotfi M, Yousefi AR, Azimi SM, Mousavi SR, Yazdansetad S, Karimi G. (2021). Simultaneous detection of Bovine Rotavirus (BRV) and Bovine Viral Diarrhea (BVD) virus in diarrheic stool samples: A comparative study of molecular and serological approaches. 7(1): 17-28. https://doi.org/10.52547/iem.7.1.17

- Seid U, Dawo F, Tesfaye A, Ahmednur M. (2020). Isolation and characterization of coronavirus and rotavirus associated with calves in central part of Oromia, Ethiopia. Veterinary Medicine International 2020(1): 8869970. https://doi.org/10.1155/2020/8869970
- Shi Z, Wang W, Xu Z, Zhang X, Lan Y. (2019). Genetic and phylogenetic analyses of the first GIII. 2 bovine norovirus in China. BMC Veterinary Research 15(1): 311. https://doi.org/10.1186/s12917-019-2060-0
- Socha W, Larska M, Rola J, Bednarek D. (2022). Occurrence of bovine coronavirus and other major respiratory viruses in cattle in Poland. Journal of Veterinary Research 66(4): 479. https://doi.org/10.2478/jvetres-2022-0059
- Takiuchi E, Stipp DT, Alfieri AF, Alfieri AA. (2006). Improved detection of bovine coronavirus N gene in faeces of calves infected naturally by a semi-nested PCR assay and an internal control. Journal of Virological Methods 131(2): 148-154. https://doi.org/10.1016/j.jviromet.2005.08.005
- Tulu Robi D, Mossie T, Temteme S. (2024). Managing viral challenges in dairy calves: strategies for controlling viral infections. Cogent Food & Agriculture 10(1): 2351048. https://doi.org/10.1080/23311932.2024.2351048
- Turan T, Işıdan H, Atasoy MO, Irehan B. (2018). Detection and molecular analysis of bovine enteric norovirus and nebovirus in Turkey. Journal of Veterinary Research 62(2): 129. https://doi.org/10.2478/jvetres-2018-0021
- Uddin Ahmed N, Khair A, Hassan J, Khan MAHNA, Rahman AA, Hoque W, Rahman M, Kobayashi N, Ward MP, Alam MM. (2022). Risk factors for bovine rotavirus infection and genotyping of bovine rotavirus in diarrheic calves in Bangladesh. PloS one 17(2): e0264577. https://doi.org/10.1371/journal.pone.0264577
- Vlasova AN, Saif LJ. (2021). Bovine coronavirus and the associated diseases. Frontiers in Veterinary Science 8: 643220. https://doi.org/10.3389/fvets.2021.643220
- Yasir A, Mahmood Y, Yaqoob MA, Zia UR, Munoz-Zanzi C, Alam MM, Warraich MA, Hassan Mushtaq M. (2023). Epidemiological investigation of norovirus infections in Punjab, Pakistan, through the One Health approach. Frontiers in Public Health 11: 1065105. https://doi.org/10.3389/fpubh.2023.1065105

Citation

Hemmati N, Ranjbar MM, Kiasari BA, Davari F, Afzadi HA. (2025). Diarrheal pathogens in calves: Rotavirus and co-infection with Coronavirus and Norovirus in selected provinces of Iran. Letters in Animal Biology 05(1): 82 – 88. https://doi.org/10.62310/ liah.v5i1.237

ISSN: 2584-0479