
1. Introduction

Coordinated peristalsis is fundamental to an animal's gastrointestinal 
(GI) health, ensuring the effective propulsion and mixing of luminal 
contents. This vital process relies on the sophisticated integration of 
smooth muscle contractility, enteric neural input, and specialized 
pacemaker activity. Interstitial Cells of Cajal (ICCs) are now definitively 
recognized as the principal pacemaker cells of the gut, generating and 
propagating slow electrical waves that synchronize smooth muscle 
contractions and facilitate peristalsis (Sanders et al. 2014; Sanders et al. 
2023). SIP syncytium (consisting of Smooth muscle cells, ICCs, and 
PDGFRα⁺ cells), supports the production of multifaceted motor 
patterns like peristalsis and segmentation (Sanders et al. 2023). 
Disturbance of this system causes gut motility impairment and can be 
expressed in disease conditions such as gastroparesis, slow transit 
constipation, and pseudo-obstruction (Foong et al. 2020; Mostafa et al. 
2010; Sanders et al. 2014). Animal models demonstrate that 
inflammation-mediated ICC damage, such as that induced by Trichinella 
spiralis infection, characterized by structural and functional disruption 
of ICC networks, leads to desynchronized pacemaker activity and 
abnormal motor patterns, which is reversible upon resolution of 
inflammation (Zhang et al. 2025). Even though ICC deficits are 
invariably observed in a range of motility disorders, it is a key 
challenge to determine whether ICC loss is a causative factor or only a 

secondary outcome of a motility disorder (Sanders et al. 2002; Mostafa 
et al. 2010; Ward and Sanders 2001). This review – a) synthesizes the 
evidence regarding the physiological actions of ICCs in the generation 
and coordination of GI motility, b) identifies the role of ICCs in motility 
disorders in animals and humans, and c) identifies therapeutic 
approaches targeting the ICCs. The evolution in the area involves 
enhanced mapping of the motor patterns and clarification of Ca2+ 
dynamics in ICCs (Sanders et al. 2023). The current therapeutic 
interventions that are being researched, as well as modulation of ICC 
ion channels by pharmacological interventions and regeneration 
strategies, reveal that precision-targeted treatment approaches are 
urgently needed to recover normal GI motility in both animals and 
humans (Huizinga et al. 1997; Zhang et al. 2025).

2. Interstitial cells of Cajal (ICCs)

2.1 Definition and Background

ICCs are mesenchymal cells and the major pacemakers and regulators 
of GI motility. ICCs were first described by the Nobel laureate Santiago 
Ramon y Cajal in 1893 and initially identified as specialized interstitial 
cells distinct from neurons and smooth muscle cells (Sweet et al. 2024; 
Mostafa et al. 2010). With the help of electrophysiological and 
ultrastructural studies they are now well established as pacemakers 
and regulators which initiate and conduct slow electrical waves, 
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Interstitial Cells of Cajal (ICCs) are critical modulators of gastrointestinal motility due to their dual 
roles of initiating slow waves and providing the interlinking connections to enteric 
neurotransmission within the syncytium known as the SIP, consisting of smooth muscle cells, 
ICCs, and platelet derived growth factor- α (PDGFRα⁺) cells. Experimental and clinical evidence 
consistently demonstrates that ICC loss or dysfunction, whether due to quantitative depletion or 
functional impairment, is strongly associated with motility disorders such as gastroparesis, 
chronic constipation, and pseudo-obstruction, as well as veterinary conditions including equine 
colic and congenital disorders in young animals. Advances in diagnostic tools, including ANO1 
immunostaining, live-cell calcium imaging, and genetic analysis, have significantly improved our 
ability to characterise ICC networks. Therapeutically, while current management relies mainly on 
prokinetic drugs and supportive care, future strategies such as stem cell–based regenerative 
therapies, organoid technology, and molecular targeting of ANO1 channels and c-Kit signalling 
pathways offer promising avenues for restoring ICC function and improving outcomes in both 
veterinary and human medicine. This review provides an overview of ICC pathophysiology and 
highlights recent progress in diagnostic and therapeutic developments, with particular emphasis 
on comparative evidence across human and veterinary medicine to identify shared mechanisms 
and translational opportunities.
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coordinating contractions of smooth muscle in the GI tract (Sanders et 
al. 2023; Sanders et al. 2014). c-Kit signaling plays a critical role in the 
proper maturation and maintenance of these essential networks, and 
disruptions in these networks is directly involved in a wide array of 
motility disorders (Ward and Sanders 2001; Mostafa et al. 2010; Iino et 
al. 2020).

2.2 Classification and Anatomy

ICCs are not a monolithic population; they are classified based on their 
anatomical location, and corresponding functional properties are 
distributed throughout the GI tract in distinct anatomical locations 
(Sanders et al. 2023; Komuro 2006):

• ICC-MY (Myenteric Plexus): These cells are between the longitudinal 
and circular muscle layers, forming extensive networks. They are 
principally responsible for generating and propagating slow waves.

• ICC-IM (Intramuscular): They are distributed in the circular and 
longitudinal muscles and mainly engaged in neurotransmission of 
enteric motor neurons to the smooth muscle.

• Other Subtypes: Other ICC populations exist deeper in the muscular 
plexus (ICC-DMP) as well as in sub-serosal regions, in which there 
are often region-specific motor modulatory functions.

These ICCs are consistently located in networks, and these networks 
influence coordination bouts of peristalsis (Sanders et al. 2014; Komuro 
2006; Hirst and Ward 2003). Ultra-structurally, ICCs are highly 
differentiated with abundant mitochondria, intermediate filaments, and 
most importantly, numerous gap junctions. These gap junctions are 
involved in strong electrical coupling with smooth muscle cells and 
other ICCs to facilitate the synchrony of muscle contraction within the 
GI musculature (Komuro 2006).

2.3. ICCs as Pacemaker and Signal Transducers

ICCs play their biological role as the main rhythmic drivers and the key 
mediators of neuronal regulation of smooth muscle function in the 
gastrointestinal tract. The slow waves that control phasic contractions 
in GI smooth muscle are generated by a process that relies essentially 
on Ca2+ dynamics in ICCs. This is initiated by de-novo, localized release 
of Ca2+ into the endoplasmic reticulum, activating Ca2+-dependent 
chloride channels (ANO1), which triggers an inward depolarizing 
current to start the slow-wave upstroke (Zhu et al. 2015; Sanders et al. 
2023; Sanders et al. 2024; Majeed et al. 2024a). The resulting 
depolarization activates T-type voltage-gated Ca2+ channels to further 
increase Ca2+ influx. This is supplemented with a plateau phase 
ensured by clusters of Ca2+ transients, ensuring the ANO1 channels 
remain active (Drumm et al. 2017; Sanders et al. 2024). This plateau 
phase continues until the Ca2+ stores are exhausted and ANO1 channels 
close and the membrane repolarizes, thus, completing the cycle 
(Sanders 2019).

In addition to their primary function, ICCs also play a crucial role 
as signal transducers by integrating excitatory and inhibitory signals 
from the enteric nervous system. Neuronal activation modulates the 
quantity of intracellular Ca2+ transients in ICCs. For example, the 
activation of excitatory neurotransmitters causes an increase in 
intracellular Ca2+ transients, promoting slow wave activity, whereas 
inhibitory neurotransmitters decrease intracellular Ca2+ transients to 
suppress slow wave generation (Sanders et al. 2024). Anatomically, 
ICCs are strategically located to play this two-fold role. They mainly 
form localizations in the myenteric plexus (ICC-MY) between the 

longitudinal and circular layer of the musculature and the musculature 
itself (ICC-IM), which are interconnected, forming a large network that 
transmit slow wave propagation and mediates neurotransmission to 
smooth muscle cells (Sanders et al. 2014; Baker et al. 2021; Hwang et al. 
2022). Such a specific localization allows this structure to be not only 
the rhythm generator, but also a critical integrator of neural signals, 
ensuring efficient GI motility.

2.4. The SIP Syncytium

A major characteristic of ICCs is their involvement in electricity 
conduction and synchronization of the GI tract, via the SIP syncytium- 
a functional network of interconnections between the smooth muscle 
cells (SMCs), ICCs, and PDGFRα cells. ICCs are electrically connected 
to SMCs and PDGFRα cells through gap junctions thus mediating the 
transmission of excitatory and inhibitory regulatory signals and their 
aggregation into the syncytium (Sanders et al. 2014; Sanders et al. 2024). 
Ca2+ activated K+ channels (encoded by Kcnn3) are also included in 
another SIP component, PDGFRα cells, which cause outward currents 
and hyperpolarization effects that constrain the overall excitability of 
the syncytium. It is known that neurotransmission originating in 
enteric motor neurons can either cause Ca2+ transients to surge or 
decline in ICCs and PDGFRα cells, with the ensuing depolarizing or 
hyperpolarizing outputs relayed throughout the SIP network (Sanders 
et al. 2024; Ward and Sanders 2006). This concerted electrical network 
enables accurate synchronization of GI motility including peristalsis 
and segmentation and allows GI to rapidly adapt to both neural and 
mechanical stimuli. Perturbation of synchronization of the SIP 
syncytium results in abnormal motility and clinical symptoms in 
animals (Klein et al. 2013; Majeed et al. 2024b).

3. ICCs in Animal Health and Disease

3.1 Functional Role Across Species

The ICCs are involved in coordinated peristalsis and segmental 
contractions of GI tract (Huizinga et al. 2022; Mostafa et al. 2010). 
However, their actual physiological requirements in different species, 
their distribution, and role vary anatomically:

Ruminants

Recent comparative studies have broadened our understanding of ICCs 
in the veterinary species and highlighted a structural diversity and 
physiological specialization between ruminants and carnivores. ICCs 
are morphologically tailored to the slow and rhythmic contractions of 
the stomachs of multi-chamber ruminants like cattle, sheep, and goats. 
These cells play a crucial role in regulating slow electrical waves that 
coordinate ruminal and omasum movements and hence maintain the 
effective fermentation and ruminal digestion flow. One of the key 
studies by Marquez et al. (2014) was able to identify c-kit positive ICCs 
in fetal, neonatal, and adult bovine forestomaches with significant 
ontogenetic and regional differences. ICCs in the fetus were smaller and 
more densely clustered, suggesting early pacemaker activity, whereas 
ICCs in the adult had an elongated morphology between bundles of 
smooth muscle. These observations are supported by studies that map 
age-related changes in the populations of ICCs, which revealed decline 
of density of ICCs with maturation in the ruminant stomach. 
Specifically, experiments carried out on pre-weaning goats demonstrate 
a significant decrease in the number of ICC and related neural 
components with the age of the animal, which reflects the 
developmental trend of functional specialization and maturation of the 
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ruminant gastric organ. This trend corresponds to the development of 
the orchestrated patterns of motility that are key to the digestive 
functioning of the adult organism (Liang et al. 2019). With respect to 
ICC plasticity under microbial and metabolic stress, the literature 
suggests an adaptive morphological changes in ICCs in response to 
chronic inflammatory or metabolic challenges rather than widespread 
degeneration of the cells. Across different models of gastrointestinal 
pathology, ICCs may undergo ultrastructural alterations and 
reorganization of their network, but the overall loss of these cells is rare 
with the exception of more severe or chronic disease condition (Komuro 
2006; Mikkelsen 2010).

Carnivorous

ICCs have a clear distribution pattern in carnivorous species, especially 
dogs and cats, with intramuscular ICCs (ICC-IM) in the pyloric and 
colonic areas playing a central role in region-specific gastrointestinal 
motility. In feline pylorus, ICC-IM show a significant concentration in 
the inner border of the circular muscle layer where they form a synapse 
type association with enteric afferent fibers with cholinergic, nitrergic, 
and substance-P markers. This dedicated architecture allows tight 
control of the pyloric sphincter function and makes a distinction 
between the activities of antral and duodenal pacemakers, thus 
facilitating the coordination of gastrointestinal emptying and intestinal 
transit (Wang et al. 2007; Komuro 2006; Sanders et al. 2024; Ward and 
Sanders 2001). ICC-IM play an important role as critical mediators of 
autonomic motility control due to their close liaison with vagal 
afferents. They transmit vagal motor signals, predominantly nitrergic 
inhibitory signals, to smooth muscle cells through gap junctions, 
causing relaxation and regulating contractile rhythmicity of gut. 
Reduction or inhibition of ICC-IM impairs vagally mediated inhibition, 
which leads to aberrations in motility including antral hypomotility or 
pyloric dysfunction (Beckett et al. 2017). This is the pathway in which 
ICC-IM supports excitatory and inhibitory neuro-effector processes in 
the gastrointestinal tract in general (Mostafa et al. 2010; Klein et al. 
2013).

3.2 Pathophysiology of ICC Dysfunction

ICC dysfunction can trigger a whole range or spectrum of GI motility 
disorders, and its pathophysiology includes quantitative loss (cell 
depletion) and functional impairment (physiological failure). The 
knowledge of the difference between the two is essential to appropriate 
diagnosis and prognosis described below and summarized in Table 1.

Quantitative loss (Cell depletion)

Quantitative loss is the reduction in absolute cell number of ICCs, or 
ICCs c-Kit and ANO1 immunoreactivity. This type of loss is usually 
attributed to chronic and long-standing insults. Meta-analysis 
illustrates severe depletion of ICC in chronic gastroduodenal lesions, 
where the degree of such loss is correlated with the delay in gastric 
emptying and level of symptoms (Varghese et al. 2025). Mechanical 
obstruction and chronic inflammation in different animal models 
gradually lower ICC numbers and destroy the network architecture, 
and these effects correlate with insult duration and intensity (Li et al. 

2019; Wu et al. 2013). The result of this longstanding loss is a direct 
contribution to the poor generation of slow waves, as shown in Fig. 1.
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Table 1. Interstitial Cells of Cajal and associated gastrointestinal motility disorders in different species

Species Associated motility 
disorder Pathological defect Pathophysiological mechanism References

Human Gastroparesis Severe quantitative loss or functional 
impairment

Failure in autonomous slow wave 
generation and propagation

(Varghese et al. 2025)

Chronic Constipation / 
CIPO

Depletion of ICC-MY and ICC-IM 
networks

Impaired neuromuscular signal 
transmission; loss of SIP synchronization

(Huizinga et al. 2021; 
Sanders et al. 2024)

Equine (Horses) Large Intestinal 
Obstructive Colic

Marked depletion in ICC-MY and 
circular muscle

Disruption of GI pacemaker activity and 
motility patterns

(Hudson et al. 2001; Koenig 
and Cote 2006)

Equine Grass Sickness 
(Dysautonomia)

Loss associated with autonomic 
neuropathy

Failure of vagally-mediated inhibitory 
neurotransmission to smooth muscle

(Pirie et al. 2014)

Ruminants 
(Cattle, Goats)

Ruminal/ Abomasal 
motility

Ontogenetic changes and regional 
structural diversity

Disrupted coordination of slow, rhythmic 
movements crucial for fermentation

(Marquez et al. 2014; Liang 
et al. 2019; Wang et al. 2018).

Carnivores 
(Dogs, Cats)

Pyloric dysfunction High concentration of ICC-IM in the 
pylorus; functional impairment.

Defective transmission of inhibitory signals 
(e.g., Nitric Oxide) to the sphincter.

(Wang et al. 2007; Beckett et 
al. 2017)

Fig. 1. Role of ICCs in coordinating gut motility; (A) Healthy ICCs, 
together with the Enteric Nervous System (ENS), produce a 
periodic series of slow waves which control gastrointestinal 
motility; (B) ICCs loss or impairment interferes with this 
process leading to the occurrence of abnormal slow waves and 
motility disorders



Functional impairment (Physiological failure)

Functional impairment refers to the loss of peacemaking ability or 
capacity of neurotransmission even though there is a preserved or near 
conserved cell number (Sarna 2008). ICCs integrate and inhibitory 
signals in the nervous system to align smooth muscles in the nervous 
system (Klein et al. 2013); in this case, when these activities fail to 
perform, they end up having abnormal motility despite a relatively 
good number of ICCs. For example, in postoperative ileus 
inflammation and nitric-oxide mediated signaling temporarily impairs 
ICC pacemaker signaling and organization, which may be restored due 
to decrease in inflammations or cell death occurs in chronic diseases 
(Kaji et al. 2018).

The Clinical Significance of ICC Loss in Intestinal Motility Disorders

The absence of ICCs is a common pathological feature irrespective of 
the types of motility disorders, which indicates a shared underlying 
mechanism of impaired neuromuscular coordination.

Inflammatory Diseases: Inflammatory bowel diseases, such as Crohn's 
disease and comparable disease conditions in animals, exhibit near-
complete elimination of ICCs in involved intestinal segments and the 
loss of these cells contributes to the motility impairment and clinical 
manifestations (Porcher et al. 2002). Similar ICC deficits are noted in 
other inflammatory and neuromuscular conditions (Burns 2007; 
Mostafa et al. 2010).

Obstructive Syndromes: ICC loss is contributing to the chronic pseudo-
obstruction and slow transit constipation (Friedmacher and Rolle 2023; 
Huizinga et al. 2021). Both functional and mechanical obstructions 
induce stress and sustained inflammation, disrupting ICC networks 
with consequent impaired slow wave generation (Wu et al. 2013; 
Hwang et al. 2025). The resulting cell loss and dysfunction is an 
important pathophysiological process at the heart of many GI motility 
disorders in both humans and animals (Sanders et al. 2002; Mostafa et 
al. 2010; Huizinga and Chen 2014).

4. Therapeutic and Clinical Implications

4.1 Susceptible Animal Populations

The animal populations at high risk of experiencing ICC dysfunction 
are horses and young animals with congenital motility disorders. ICC 
depletion was observed in horses with large intestinal obstructive colic 
a n d e q u i n e g r a s s s i c k n e s s ( d y s a u t o n o m i a ) b y c - K i t 
immunohistochemistry (Fintl and Hudson 2010; Fintl et al. 2004; 
Pavone et al. 2012; Hudson et al. 2001), particularly in the myenteric 
plexus and circular muscle tissue. Similarly, small animals and infants 
with congenital motility dysfunction express severe deficiency or 
absent ICCs, such as Hirschsprung disease and other syndromes, 
characterized by a ganglionosis or hypoganglionosis (Friedmacher and 
Rolle 2023; Rolle et al. 2007; Okamura et al. 2009; Chen et al. 2014; Burns 
2007). Collectively, the literature suggests that in horses with life-
threatening motility problems and young animals with congenital 
defects, the lack of or defects in ICC is a central pathologic mechanism 
that directly contributes to clinical symptoms of gastrointestinal 
dysmotility in both groups.

4.2 Advanced Diagnostic and Research Techniques

To effectively evaluate ICCs, it is necessary to combine morphological, 
functional, and molecular methods since none can individually give 
complete information on cell integrity and activity (Fig. 2).

A. Morphological Diagnostics (Immunohistochemistry)

Immunohistochemistry is the main clinical technique in the detection of 
ICC networks in tissue. The c-Kit (CD117) and ANO1 immunostaining 
are the common methods to visualize ICC networks in both human and 
animal GI tissues (Fintl et al. 2004; Pavone et al. 2012; Fintl et al. 2020). 
However the limitation of c-Kit is that it is also expressed by mast cells 
and further both the markers can produce false negative results due to 
artefacts or disease induced losses of antigen or markers (Friedmacher 
and Rolle 2023; Huizinga and Chen 2014).

B. Functional Diagnostics

Functional diagnostics are essential for clarifying ICC physiology and 
confirming motility dysfunction caused by functional impairment.

• Electrophysiological Recordings: Techniques like patch clamp allow 
direct measurement of ICC pacemaker activity and slow wave 
generation, which provides knowledge about the electrical properties 
of ICCs and their coupling to smooth muscle (Sanders et al. 2002; 
Sanders et al. 2024).

• Live Cell Calcium Imaging: This method enables the real-time 
visualization of spontaneous and evoked Ca2+ transients in ICCs, 
directly underlying slow wave activity and neurotransmission 
(Sanders et al. 2024; Baker et al. 2016). The researchers have revealed 
the stochastic and regionally variable nature of Ca²⁺ signaling in ICC 
subtypes and their dependence on intracellular stores and specific ion 
channels such as ANO1 (Drumm et al. 2019; Sanders et al. 2024).
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Fig. 2. Diagnosis and management of ICCs related motility disorders. 
The scheme details the three main diagnostic modalities 
(Immunohistochemistry like c-Kit, Functional Testing such as 
Electrogastrography, and Genetic Analysis) and the two primary 
treatment modalities (Pharmacological interventions and Supportive 
care) used to manage ICC-associated motility disorders



C. Molecular Analysis

The molecular or genetic studies also help explain ICC functioning and 
malfunctioning. It has been demonstrated that c-Kit mutant animals 
(W/Wv, Ws/Ws, etc.) reveal the causal connection of Kit signaling in 
ICC development, maintenance, and motor disorders (Sanders et al. 
2002; Hwang et al. 2025). ICCs can be isolated and characterized via 
genetic labelling (e.g., Kit+/copGFP mice) and flow cytometry to 
perform transcriptomic and proteomic analyses (Ro et al. 2010). Cross-
breeding of diseased models (e.g. diabetic mice) enables the possibility 
of investigating the ICC responses to pathophysiological insults. 
Finally, to achieve adequate diagnosis and mechanistic studies in 
gastrointestinal motility disorders, a combination and integration of 
immunohistochemical, functional, and molecular methods is essential 
as shown in Fig. 2.

4.3 Therapeutic Strategies

Treatment of gastrointestinal motility disorders related to ICC 
dysfunction involves a multi-modal approach using pharmacological 
and non-pharmacological interventions and supportive care along with 
emerging interventions as shown in Fig. 2.

A. Pharmacological Interventions

Medical management is based on kinetics of prokinetic agents. These 
medications increase the activity of remaining neural and muscular 
pathways in an attempt to adjust the loss of the ICC controlled 
pacemaker activity. However, there is currently no agent that directly 
reinstates ICC functional activity. A good example is prucalopride, a 
selective 5-HT4 agonist, which provides increased intestinal contractile 
activity, primarily in duodenum, cecum, and colon without major 
adverse effects in horses with hypomotility (Laus et al. 2017). Another 
5-HT4 agonist promotes enteric neurotransmission with an improved 
peristalsis in young animal species with chronic idiopathic constipation 
(Chang et al. 2023). The clinical response differs considerably across 
species and underlying pathology, but requires further validation in 
veterinary use, as well as an individualized dosing regimen.

Besides traditional prokinetics, following newer agents aim at the 
fundamental processes of ICCs:

• ANO1 Modulators: ANO1 is the Ca2+-activated chloride-channel 
fundamental to ICC pacemaker activity, and modulators of ANO1 are 
promising agents (Eact, prostratin, and tannic acid) for direct 
restoration or augmentation of residual ICC activity in motility 
disorders (Huizinga and Chen 2014).

• Signaling Pathways: They are influenced by the c-Kit signaling such as 
the PI3K/Akt and MAPK/ERK pathways are being explored as the 
targets of certain agents which play an important role in the 
maintenance and survival of the ICC (Choi et al. 2023).

• Traditional Chinese Medicine (TCM): TCM products,  such as the herbal 
formula Rikkunshito or compounds like ginsenosides, with multi-
pathway regulation have been found in experimental models, 
regulating the autophagy-apoptosis process and promoting ICC 
homeostasis in alterations of GI motility (Zhang et al. 2025). This 
provides a promising direction of supporting pharmacological 
intervention.

Determining how ICC is regulated at a molecular level is very 
important. By unraveling the mechanisms involved in ICC damage and 
regeneration (c-Kit/SCF, ANO1, and PDGFRα signaling), researchers 

can work out accuracy-based methods to avoid the loss of said cells. 
These comprehensive plans constitute a translational pipeline to revive 
the functional ICC networks and long-term improvement in motility of 
both veterinary and pediatric patients (Friedmacher and Rolle 2023; 
Choi et al. 2023).

B. Supportive and Non-Pharmacological Measures

Supportive care consisting of nutritional support and fluid 
management is vital in acute and chronic motility disorders and may 
constitute the most defining frontier of management. These 
interventions ensure the maintenance of hydration, electrolyte, and 
energy levels, which are important in avoiding the occurrence of any 
life-threatening complications due to ileus, obstruction or excessive 
dysmotility (Fintl et al. 2010; Fintl et al. 2004). In severe congenital ICC 
disorders (e.g. Hirschsprung disease or intestinal neuronal dysplasia, 
hypoganglionosis), the pharmacological response is usually inadequate 
in pediatric patients (Friedmacher and Rolle 2023; Burns 2007; Jackman 
et al. 2024). In such instances, first-line therapy consists of supportive 
treatment, enteral or parenteral nutrition, to guarantee sufficient caloric 
uptake and fluid balance (Rolle et al. 2007; Hudson et al. 2001).

C. Neuromodulation Techniques

Neuromodulation, which concerns various electrical stimulation 
applications, is also being studied in the hope that it will be able to 
restore or enhance ICC-mediated pacemaker activity (Huizinga and 
Chen 2014; Choi et al. 2023). Functional studies indicate that electrical 
stimulation may serve to stimulate motility through the action upon 
ICC and enteric neural networks. This provides a potentially 
encouraging adjuvant treatment, particularly in resistant patients in 
whom conventional medicine and supportive care has failed (Choi et al. 
2023). However, evidence of the robust clinical efficacy is still lacking, 
meaning that future studies have to focus on species-specific responses.

4.4 Regenerative therapy and Future Directions

The current review highlights the future and emerging regenerative 
therapeutic approaches in restoring ICC networks that hold much 
promise in terms of improving the outcomes in vulnerable animal 
populations, including horses with colic and patients with severe 
congenital motility disorders. Such options include treatment of such a 
damaged ICC network through repairing and replacing, or 
pharmacological assistance.

Stem Cell-Based Replacement Therapies

One of the leading forms of regenerative research is stem cell therapy, 
whose target is to repopulate lost gut ICCs (Yoshimaru et al. 2024). The 
exploration of the potential of various stem cell sources are actively 
underway and includes:

• Enteric nervous system progenitor cells

• Embryonic stem cells

• Induced pluripotent stem cells (iPSCs)

• Mesenchymal stem cells (MSCs)

These cells have shown the potential to regenerate ICCs and related 
neuromuscular components in injured portions of the gut and is 
currently under investigation in conditions such as Hirschsprung 
disease and chronic intestinal pseudo-obstruction (Yoshimaru et al. 
2024; Zhou and OConnor 2017). Moreover, an improved technique in 
the field of animal organoid has allowed the development of functional 
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ICCs in vitro with a future potential to develop a cell-based replacement 
therapy targeting ICCs (Zhou and O'Connor 2017; Huizinga et al. 2021).

5. Limitations and Controversies

In spite of the fact that significant advances in understanding the 
biology of ICCs and their importance in GI motility have been made, 
several limitations and controversies remain unresolved.

5.1. Cause or Consequence

There has always been a lingering debate as to whether ICC loss is 
directly the primary factor leading to motility disturbances or the 
secondary effect of another underlying cause, such as inflammation, 
obstruction, or neuropathy. According to some studies, ICC depletion 
occurs before motility impairment, whereas others report depletion 
occurring during significant and prolonged disease progression (Kishi 
et al. 2020; Rybak et al. 2020), so it is hard to determine a cause and 
effect relationship.

5.2. Species-Specific Variability

Although ICC dysfunction was observed in all species, there are 
striking differences in the level of defects and related clinical effects 
(e.g., in horses, carnivores, and ruminants). This inconsistency serves to 
complicate translational research and questions what degree of validity 
can be achieved in characterizing animal versus human disease 
processes (Sander et al. 2014; Galiazzo 2020).

5.3. Diagnostic Challenges

ICC identification by immunohistochemistry, using c- Kit and ANO1 
markers, is a gold standard. However, both these markers suffer from 
certain limitations. Mast cells also express c-Kit, which may lead to 
misinterpretation. Furthermore, a loss in marker expression may 
happen in ICCs without cell loss, generating false-negatives results. 
These limitations make predictability of ICC quantification in both 
experimental and clinical applications problematic (Hawes et al. 2009; 
Al-Ahmadi et al. 2023).

5.4. Functional and Structural Loss

Another controversy is whether functional impairment (loss of 
pacemaker activity despite preserved ICC density) is equally important 
clinically as structural depletion. Indicatively, acute inflammations can 
impair ICC activity without causing cell loss, and still, manifest with 
severe dysmotility. Such distinction is not perfectly well-resolved in 
existing literature (Huizinga et al. 2009; Li et al. 2019). Accordingly, the 
question of whether ICC loss is a primary or secondary effect is still a 
significant gap in the way of targeted therapies.

5.5. Heterogeneity of ICC Populations

The three ICC subtypes (ICC-MY, ICC-IM and ICC-DMP) exhibit 
different physiological functions, whereas the majority of studies lack 
differentiation between the subtypes in clinical tests. Such 
simplification obscures a subtype-specific susceptibility that can lead to 
focused treatment (Drumm et al. 2019; Sanders et al. 2024).

5.6. Therapeutic Uncertainty

Although emerging therapeutic approaches, such as regenerative 
therapies and ion channel modulators (e.g., ANO1-targeted drugs) are 
intriguing, their clinical implementation remains limited (Friedmacher 
and Rolle 2023; Choi et al. 2023). Long-term safety, efficacy, and 
whether true SIP syncytial functionality can fully be restored have been 

the subjects of controversies about these drugs. In addition, 
neuromodulation is an interventional procedure that produces different 
results across species, which further complicates validation and 
standardization (Choi et al. 2023).

6. Conclusions

Interstitial Cells of Cajal (ICCs) are essential as modulators of 
gastrointestinal motility. Their malfunction, which is either quantitative 
depletion or impaired functioning, is always linked to devastating 
motility disorders in both humans and animal species, with equine colic 
as a typical case of such disorders. The evaluative precision is improved 
with diagnostic advancements like ANO1 immunohistochemistry and 
therapeutic potential with approaches such stem cell-mediated 
regeneration and ANO1/c-Kit targeted inhibition. ICCs manipulation is 
a significant translational field. The further development of the field 
requires more accurate and integrative methods of research 
implementation to be able to apply the basic findings to clinical practice 
in both human and veterinary medicine.
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