Advancing precision medicine in companion animal oncology: Integrating AI, advanced radiology, and surgical innovation

Precision medicine in animal oncology

Authors

  • Mahsa Mohammadnezhad Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Mahsa Bagheri Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
  • Samin Shariati Majd 3- Faculty of Veterinary Medicine, Shushtar Branch, Islamic Azad University, Shushtar, Iran
  • Amirhossein Abdolhosseini Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Mohammad Foad Rasoul Panah Faculty of Veterinary Medicine, Shushtar Branch, Islamic Azad University, Shushtar, Iran
  • Maasoumeh Rezaee Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Mohammad Arad Zandieh Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

DOI:

https://doi.org/10.62310/liab.v5i2.228

Keywords:

Artificial Intelligence, Precision Medicine, Small Animals, Tumour, Radiology, Surgery

Abstract

Precision medicine (PM) is bringing about a paradigm shift in the companion animal oncology. PM approach consider a unique treatment and method of diagnosing for each patients. in essence of PM, new cutting-edge technology such as artificial intelligence (AI) hand in hand to novel imaging approach and surgical innovation improving the cancer management. This review examines open-access and published English-language articles containing keywords such as AI, advanced radiology, surgical innovation, and precision medicine in the field of companion animals from 2014 to 2025 in PubMed, Scopus, Web of Science, and Google Scholar. The PM principles have changed surgical oncology, including the integration of oncogenomics, the use of minimally invasive techniques, and robotic-assisted procedures that make it easier to move around. In addition, AI makes these surgical frontiers even bigger by helping with detailed preoperative planning, real-time guidance during surgery, and objective skill training. Also, AI has pivotal role in enhancing diagnostic accuracy, automating image segmentation, and bolstering clinical decision support within modern radiology. This paper also talks about how useful intraoperative imaging is for quickly checking the margins and new precision medicine technologies like Next-Generation Sequencing (NGS), liquid biopsies, and non-coding RNAs for finding and predicting diseases. AI has recently sped up frameworks for comparative oncology, which has made the translation medicine easier. On the other hand, the PM method has its own problems, like high costs and the need for experts to handle big issues. It needs clear rules for sharing data and teams of experts from different fields. This integrated framework is very important for raising the standard of animal care, coming up with new ideas, and making a big difference in both human and animal medicine.

Metrics

Metrics Loading ...

References

Abbasi N, Hussain HK. (2024). Integration of artificial intelligence and smart technology: AI-driven robotics in surgery: precision and efficiency. Journal of Artificial Intelligence General science 5(1): 381-390. https://doi.org/10.60087/jaigs.v5i1.207

Able H, Wolf-Ringwall A, Rendahl A, Ober CP, Seelig DM, Wilke CT, Lawrence J. (2021). Computed tomography radiomic features hold prognostic utility for canine lung tumors: An analytical study. PloS one 16(8): e0256139. https://doi.org/10.1371/journal.pone.0256139

Aguiar P, Fernandez-Ferreiro A, Galli F, Tsoumpas C. (2019). Imaging biomarkers in translational small animal models. Contrast Media and Molecular Imaging 2019: 9469041. https://doi.org/10.1155/2019/9469041

Alam IS, Steinberg I, Vermesh O, van den Berg NS, Rosenthal EL, van Dam GM, Ntziachristos V, Gambhir SS, Hernot S, Rogalla S. (2018). Emerging intraoperative imaging modalities to improve surgical precision. Molecular Imaging Biology 20(5): 705-715. https://doi.org/10.1007/s11307-018-1227-6

Alshammari AH, Oshiro T, Ungkulpasvich U, Yamaguchi J, Morishita M, Khdair SA, Hatakeyama H, Hirotsu T, di Luccio E. (2025). Advancing veterinary oncology: Next-generation diagnostics for early cancer detection and clinical implementation. Animals 15(3): 389. https://doi.org/10.3390/ani15030389

Alvarez CE. (2014). Naturally occurring cancers in dogs: insights for translational genetics and medicine. ILAR Journal 55(1): 16-45. https://doi.org/10.1093/ilar/ilu010

Aramini B, Masciale V, van Vugt JL. (2023). Editorial: Innovations in surgical oncology. Frontiers in Oncology 13: 1257762. https://doi.org/10.3389/fonc.2023.1257762

Argento G, Rendina EA, Maurizi G. (2025). Advancing thoracic surgical oncology in the era of precision medicine. Cancers 17(1): 115. https://doi.org/10.3390/cancers17010115

Azari F, Kennedy G, Bernstein E, Hadjipanayis C, Vahrmeijer AL, Smith BL, Rosenthal EL, Sumer BD, Tian J, Henderson ER, Lee A, Nguyen Q, Gibbs SL, Pogue BW, Orringer DA, Charalampaki C, Martin LW, Tanyi JL, Lee MK, Lee JYK, Singhal S. (2021). Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings. Journal of Biomedical Optics 26(5): 050901. https://doi.org/10.1117/1.JBO.26.5.050901

Bahcall O. (2015). Precision medicine. Nature 526(7573): 335. https://doi.org/10.1038/526335a

Bain AP, Holcomb CN, Zeh III HJ, Sankaranarayanan G. (2024). Artificial intelligence for improving intraoperative surgical care. Global Surgical Education-Journal of the Association for Surgical Education 3(1): 73. https://doi.org/10.1007/s44186-024-00268-z

Balsa IM, Culp WTN. (2019). Use of minimally invasive surgery in the diagnosis and treatment of cancer in dogs and cats. Veterinary Science 6(1): 33. https://doi.org/10.3390/vetsci6010033

Barot S, Patel H, Yadav A, Ban I. (2023). Recent advancement in targeted therapy and role of emerging technologies to treat cancer. Medical Oncology 40(11): 324. https://doi.org/10.1007/s12032-023-02184-6

Basran PS, Porter I. (2022). Radiomics in veterinary medicine: Overview, methods, and applications. Veterinary Radiology and Ultrasound 63(1): 828-839. https://doi.org/10.1111/vru.13156

Birettoni F, Caivano D, Rishniw M, Moretti G, Porciello F, Giorgi ME, Crovace A, Bianchini E, Bufalari A. (2017). Preoperative and intraoperative ultrasound aids removal of migrating plant material causing iliopsoas myositis via ventral midline laparotomy: a study of 22 dogs. Acta Veterinaria Scandinavica 59(1): 12. https://doi.org/10.1186/s13028-017-0280-5

Bolha L, Ravnik-Glavač M, Glavač D. (2017). Long noncoding RNAs as biomarkers in cancer. Disease Markers 2017(1): 7243968. https://doi.org/10.1155/2017/7243968

Borah S, Soren S, Gogoi J, Borah B. (2025). The significant potential of robotics in animal welfare. International Journal of Life Sciences 13: 1. https://doi.org/10.53068/ijlsci.2025.13.1

Brunetti B, de Biase D, Dellapina G, Muscatello LV, Ingravalle F, Tura G, Bacci B. (2023). Validation of p53 immunohistochemistry (PAb240 clone) in canine tumors with next-generation sequencing (NGS) analysis. Animals 13(5): 899. https://doi.org/10.3390/ani13050899

Bu LL, Yang K, Xiong WX, Liu FT, Anderson B, Wang Y, Wang J. (2016). Toward precision medicine in Parkinson's disease. Annals of Translational Medicine 4(2): 26. https://doi.org/10.3978/j.issn.2305-5839.2016.01.21

Buck J, Larkin JR, Simard MA, Khrapitchev AA, Chappell MA, Sibson NR. (2018). Sensitivity of multiphase pseudocontinuous arterial spin labelling (MP pCASL) magnetic resonance imaging for measuring brain and tumour blood flow in mice. Contrast Media Molecular Imaging 2018(1): 4580919. https://doi.org/10.1155/2018/4580919

Buote NJ. (2024). Looking to the future; Veterinary robotic surgery. Veterinary Clinics of North America: Small Animal Practice 54(4): 735-751. https://doi.org/10.1016/j.cvsm.2024.02.008

Burti S, Banzato T, Coghlan S, Wodzinski M, Bendazzoli M, Zotti A. (2024). Artificial intelligence in veterinary diagnostic imaging: Perspectives and limitations. Research in Veterinary Science 175: 105317. https://doi.org/10.1016/j.rvsc.2024.105317

Cabon Q, Sayag D, Texier I, Navarro F, Boisgard R, Virieux-Watrelot D, Ponce F, Carozzo C. (2016). Evaluation of intraoperative fluorescence imaging-guided surgery in cancer-bearing dogs: a prospective proof-of-concept phase II study in 9 cases. Translational Research 170: 73-88. https://doi.org/10.1016/j.trsl.2015.12.001

Cavaliere AF, Perelli F, Zaami S, Piergentili R, Mattei A, Vizzielli G, Scambia G, Straface G, Restaino S, Signore F. (2021). Towards personalized medicine: non-coding RNAs and endometrial cancer. Healthcare 9(8): 965. https://doi.org/10.3390/healthcare9080965

Chang M, Canseco JA, Nicholson KJ, Patel N, Vaccaro AR. (2020). The role of machine learning in spine surgery: The future is now. Frontiers in Surgery 7: 54. https://doi.org/10.3389/fsurg.2020.00054

Chiu FY, Yen Y. (2023). Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives. Biomarker Research 11(1): 35. https://doi.org/10.1186/s40364-023-00476-7

Chon E, Hendricks W, White M, Rodrigues L, Haworth D, Post G. (2024). Precision medicine in veterinary science. Veterinary Clinics of North America: Small Animal Practice 54(3): 501-521. https://doi.org/10.1016/j.cvsm.2023.12.006

Cohen EB, Gordon IK. (2022). First, do no harm. Ethical and legal issues of artificial intelligence and machine learning in veterinary radiology and radiation oncology. Veterinary Radiology and Ultrasound 63: 840-850. https://doi.org/10.1111/vru.13171

Collaborative P, Dudurych I, Kelly M, Aalbers A, Abdul Aziz N, Abecasis N, Abraham‐Nordling M, Akiyoshi T, Alberda W, Albert M. (2020). Predicting outcomes of pelvic exenteration using machine learning. Colorectal Disease 22(12): 1933-1940. https://doi.org/10.1111/codi.15260

Colombe P, Beguin J, Benchekroun G, Le Roux D. (2022). Blood biomarkers for canine cancer, from human to veterinary oncology. Veterinary Comparative Oncology 20(4): 767-777. https://doi.org/10.1111/vco.12848

Colombo J, Moschetta-Pinheiro MG, Novais AA, Stoppe BR, Bonini ED, Gonçalves FM, Fukumasu H, Coutinho LL, Chuffa LG dA, Zuccari DAP dC. (2021). Liquid biopsy as a diagnostic and prognostic tool for women and female dogs with breast Cancer. Cancers 13(20): 5233. https://doi.org/10.3390/cancers13205233

Das B, Ellis M, Sahoo M. (2024). Veterinary diagnostics: growth, trends, and impact. In: Suar M, Misra N, Singh PK, editors, Evolving landscape of molecular diagnostics. Elsevier. Pp. 227-242. https://doi.org/10.1016/B978-0-323-99316-6.00007-X

De Bruycker S, Vangestel C, Staelens S, Van den Wyngaert T, Stroobants S. (2018). How to modulate tumor hypoxia for preclinical in vivo imaging research. Contrast Media and Molecular Imaging 2018(1): 4608186. https://doi.org/10.1155/2018/4608186

Domrazek K, Jurka P. (2024). Application of next-generation sequencing (NGS) techniques for selected companion animals. Animals 14(11): 1578. https://doi.org/10.3390/ani14111578

Dreyer SB, Pinese M, Jamieson NB, Scarlett CJ, Colvin EK, Pajic M, Johns AL, Humphris JL, Wu J, Cowley MJ, Chou A, Nagrial AM, ……..David K. (2020). Precision oncology in surgery: Patient selection for operable pancreatic cancer. Annals of Surgery 272(2): 366-376. https://doi.org/10.1097/SLA.0000000000003143

Duffy DJ. (2016). Problems, challenges and promises: perspectives on precision medicine. Briefings in Bioinformatics 17(3): 494-504. https://doi.org/10.1093/bib/bbv060

Duggirala HJ, Johnson JL, Tadesse DA, Hsu CH, Norris AL, Faust J, Walter-Grimm L, Colonius T. (2025). Artificial intelligence and machine learning in veterinary medicine: a regulatory perspective on current initiatives and future prospects. American Journal of Veterinary Research 86(S1): S16-S21. https://doi.org/10.2460/ajvr.24.09.0285

Edsjö A, Lindstrand A, Gisselsson D, Mölling P, Friedman M, Cavelier L, Johansson M, Ehrencrona H, Fagerqvist T, Strid T. (2023). Building a precision medicine infrastructure at a national level: The Swedish experience. Cambridge Prisms: Precision Medicine 1: e15. https://doi.org/10.1017/pcm.2023.3

Fard MJ, Ameri S, Darin Ellis R, Chinnam RB, Pandya AK, Klein MD. (2018). Automated robot-assisted surgical skill evaluation: Predictive analytics approach. The International Journal of Medical Robotics and Computer Assisted Surgery 14(1): 1850. https://doi.org/10.1002/rcs.1850

Favril S, Abma E, Blasi F, Stock E, Devriendt N, Vanderperren K, de Rooster H. (2018). Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology. Veterinary Record 183(11): 354. https://doi.org/10.1136/vr.104851

Fish EJ, Martinez‐Romero EG, DeInnocentes P, Koehler JW, Prasad N, Smith AN, Bird RC. (2020). Circulating microRNA as biomarkers of canine mammary carcinoma in dogs. Journal of Veterinary Internal Medicine 34(3): 1282-1290. https://doi.org/10.1111/jvim.15736

Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, Domarkas J, Lord S, Baldry C, Gilbert FJ. (2015). Imaging tumour hypoxia with positron emission tomography. British Journal of Cancer 112(2): 238-250. https://doi.org/10.1038/bjc.2014.610

Fleming J, Creevy K, Promislow D. (2011). Mortality in North American dogs from 1984 to 2004: an investigation into age‐, size‐, and breed‐related causes of death. Journal of Veterinary Internal Medicine 25(2): 187-198. https://doi.org/10.1111/j.1939-1676.2011.0695.x

Flory A, Gray S, McLennan LM, Rafalko JM, Marshall MA, Wotrang K, Kroll M, Flesner BK, O’Kell AL, Cohen TA. (2024). Study Design and interim analysis of the Cancer Lifetime Assessment Screening Study in Canines (CLASSiC): The first prospective cancer screening study in dogs using next-generation sequencing-based liquid biopsy. https://doi.org/10.1101/2024.04.01.587600

Flory A, Kruglyak KM, Tynan JA, McLennan LM, Rafalko JM, Fiaux PC, Hernandez GE, Marass F, Nakashe P, Ruiz-Perez CA. (2022). Clinical validation of a next-generation sequencing-based multi-cancer early detection “liquid biopsy” blood test in over 1,000 dogs using an independent testing set: The CANcer Detection in Dogs (CANDiD) study. PloS one 17(4): e0266623. https://doi.org/10.1371/journal.pone.0266623

Fonseca-Alves CE, Palmieri C, Dagli MLZ, Laufer-Amorim R. (2021). Editorial: Precision medicine in veterinary oncology. Frontiers in Veterinary Science 8: 718891. https://doi.org/10.3389/fvets.2021.718891

Furdos I, Fazekas J, Singer J, Jensen-Jarolim E. (2015). Translating clinical trials from human to veterinary oncology and back. Journal of Translational Medicine 13: 265. https://doi.org/10.1186/s12967-015-0631-9

Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi M. (2016). Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis. American Journal of Nuclear Medicine and Molecular Imaging 6(6): 310-327. https://www.ncbi.nlm.nih.gov/pubmed/28078184

Giardino A, Gupta S, Olson E, Sepulveda K, Lenchik L, Ivanidze J, Rakow-Penner R, Patel MJ, Subramaniam RM, Ganeshan D. (2017). Role of imaging in the era of precision medicine. Academic Radiology 24(5): 639-649. https://doi.org/10.1016/j.acra.2016.11.021

Goisauf M, Cano Abadia M. (2022). Ethics of AI in radiology: A review of ethical and societal implications. Frontiers in Big Data 5: 850383. https://doi.org/10.3389/fdata.2022.850383

Gola C, Giannuzzi D, Rinaldi A, Iussich S, Modesto P, Morello E, Buracco P, Aresu L, De Maria R. (2021). Genomic and transcriptomic characterization of canine osteosarcoma cell lines: A valuable resource in translational medicine. Frontiers in Veterinary Science 8: 666838. https://doi.org/10.3389/fvets.2021.666838

Goodwin S, McPherson JD, McCombie WR. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Review Genetics 17(6): 333-351. https://doi.org/10.1038/nrg.2016.49

Gray M, Meehan J, Turnbull AK, Martinez-Perez C, Kay C, Pang LY, Argyle DJ. (2020). The importance of the tumor microenvironment and hypoxia in delivering a precision medicine approach to veterinary oncology. Frontiers in Veterinary Science 7: 598338. https://doi.org/10.3389/fvets.2020.598338

Grozdanić SD, Murtha H, Lazić T, Đukić S, Luzetskii S, Ursu DC, Sarment D. (2024). Preoperative and intraoperative ct imaging for orbital foreign bodies identification and surgical planning in veterinary medicine. Acta Veterinaria 74(3): 367-397. https://doi.org/10.2478/acve-2024-0026

Han L, Lee Y, Lee H, Lee H, Lee JI. (2024a). Overcoming challenges in interdisciplinary collaboration between human and veterinary medicine. Veterinary Sciences 11(11): 518. https://doi.org/10.3390/vetsci11110518

Han Z, Wang Y, Wang W, Zhang T, Wang J, Ma X, Men K, Shi A, Gao Y, Bi N. (2024b). Artificial intelligence-assisted delineation for postoperative radiotherapy in patients with lung cancer: a prospective, multi-center, cohort study. Frontiers in Oncology 14: 1388297. https://doi.org/10.3389/fonc.2024.1388297

Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. (2024). Non-coding RNA-Mediated N6-Methyladenosine (m(6)A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Research 9(1): 84-104. https://doi.org/10.1016/j.ncrna.2023.11.005

Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. (2023). Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Communication and Signaling 21(1): 32. https://doi.org/10.1186/s12964-023-01053-z

Hassan AM, Rajesh A, Asaad M, Nelson JA, Coert JH, Mehrara BJ, Butler CE. (2023). Artificial intelligence and machine learning in prediction of surgical complications: Current state, applications, and implications. The American Surgeon 89(1): 25-30. https://doi.org/10.1177/00031348221101488

Hennessey E, DiFazio M, Hennessey R, Cassel N. (2022). Artificial intelligence in veterinary diagnostic imaging: A literature review. Veterinary Radiology and Ultrasound 63(1): 851-870. https://doi.org/10.1111/vru.13163

Hespel AM, Zhang Y, Basran PS. (2022). Artificial intelligence 101 for veterinary diagnostic imaging. Veterinary Radiology and Ultrasound 63(1): 817-827. https://doi.org/10.1111/vru.13160

Hirsch FR, Suda K, Wiens J, Bunn PA Jr. (2016). New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 388(10048): 1012-1024. https://doi.org/10.1016/S0140-6736(16)31473-8

Hitte C, Le Beguec C, Cadieu E, Wucher V, Primot A, Prouteau A, Botherel N, Hedan B, Lindblad-Toh K, Andre C, Derrien T. (2019). Genome-wide analysis of long non-coding RNA profiles in canine oral melanomas. Genes 10(6): 477. https://doi.org/10.3390/genes10060477

Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T. (2015). Current capabilities and development potential in surgical robotics. International Journal of Advanced Robotic Systems 12(5): 61. https://doi.org/10.5772/60947

Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. (2018). Real-time imaging of brain tumor for image-guided surgery. Advanced Healthcare Materials 7(16): e1800066. https://doi.org/10.1002/adhm.201800066

Hussain T, Nguyen QT. (2014). Molecular imaging for cancer diagnosis and surgery. Advanced Drug Delivery Reviews 66: 90-100. https://doi.org/10.1016/j.addr.2013.09.007

Hwang RF, Hunt KK. (2020). The emergence of robotic-assisted breast surgery: Proceed with caution. Annals of Surgery 271(6): 1013-1015. https://doi.org/10.1097/SLA.0000000000003902

Iftikhar M, Saqib M, Zareen M, Mumtaz H. (2024). Artificial intelligence: revolutionizing robotic surgery: review. Annals of Medicine and Surgery 86(9): 5401-5409. https://doi.org/10.1097/MS9.0000000000002426

Inoue M, Hasegawa A, Hosoi Y, Sugiura K. (2015). A current life table and causes of death for insured dogs in Japan. Preventive Veterinary Medicine 120(2): 210-218. https://doi.org/10.1016/j.prevetmed.2015.03.018

Jalote-Parmar A, Badke-Schaub P. (2008). Critical factors influencing intra-operative surgical decision-making. IEEE International Conference on Systems, Man, and Cybernetics. 12-15 October, 2008, Singapore. https://doi.org/10.1109/ICSMC.2008.4811779

Jensen MM, Kjaer A. (2015). Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies. American Journal of Nuclear Medicine and Molecular Imaging 5(5): 431. https://doi.org/10.1016/j.nucmed.2015.05.005

Joshi FR, Manavaki R, Fryer TD, Figg NL, Sluimer JC, Aigbirhio FI, Davenport AP, Kirkpatrick PJ, Warburton EA, Rudd JH. (2017). Vascular imaging with 18F-fluorodeoxyglucose positron emission tomography is influenced by hypoxia. Journal of the American College of Cardiology 69(14): 1873-1874. https://doi.org/10.1016/j.jacc.2017.02.025

Kasztura M, Richard A, Bempong NE, Loncar D, Flahault A. (2019). Cost-effectiveness of precision medicine: a scoping review. International Journal of Public Health 64(9): 1261-1271. https://doi.org/10.1007/s00038-019-01298-x

Kennedy-Metz LR, Mascagni P, Torralba A, Dias RD, Perona P, Shah JA, Padoy N, Zenati MA. (2021). Computer vision in the operating room: Opportunities and caveats. IEEE Transactions on Medical Robotics and Bionics 3(1): 2-10. https://doi.org/10.1109/tmrb.2020.3040002

Kim J, Bae H, Ahn S, Shin S, Cho A, Cho KW, Jung DI, Yu D. (2021). Cell-free DNA as a diagnostic and prognostic biomarker in dogs with tumors. Frontiers in Veterinary Science 8: 735682. https://doi.org/10.3389/fvets.2021.735682

Knudsen JE, Ghaffar U, Ma R, Hung AJ. (2024). Clinical applications of artificial intelligence in robotic surgery. Journal of Robotic Surgery 18(1): 102. https://doi.org/10.1007/s11701-024-01867-0

König IR, Fuchs O, Hansen G, von Mutius E, Kopp MV. (2017). What is precision medicine? European Respiratory Journal 50(4): 1700391. https://doi.org/10.1183/13993003.00391-2017

Korngiebel DM, Thummel KE, Burke W. (2017). Implementing precision medicine: The ethical challenges. Trends in Pharmacological Sciences 38(1): 8-14. https://doi.org/10.1016/j.tips.2016.11.007

Kovacs N, Szigeti K, Hegedus N, Horvath I, Veres DS, Bachmann M, Bergmann R, Mathe D. (2018). Multimodal PET/MRI imaging results enable monitoring the side effects of radiation therapy. Contrast Media and Molecular Imaging 2018(1): 5906471. https://doi.org/10.1155/2018/5906471

Kraus JM, Lausser L, Kuhn P, Jobst F, Bock M, Halanke C, Hummel M, Heuschmann P, Kestler HA. (2018). Big data and precision medicine: challenges and strategies with healthcare data. International Journal of Data Science and Analytics 6: 241-249. https://doi.org/10.1007/s41060-018-0095-0

Kudnig ST, Séguin B. (2022). Veterinary surgical oncology, 2nd Edition. Wiley-Blackwell. https://www.wiley.com/go/kudnig/veterinary

Kumar V, Baburaj V, Patel S, Sharma S, Vaishya R. (2021). Does the use of intraoperative CT scan improve outcomes in Orthopaedic surgery? A systematic review and meta-analysis of 871 cases. Journal of Clinical Orthopaedics and Trauma 18: 216-223. https://doi.org/10.1016/j.jcot.2021.04.030

Lajmi N, Alves-Vasconcelos S, Tsiachristas A, Haworth A, Woods K, Crichton C, Noble T, Salih H, Varnai KA, Branford-White H, Orrell L, Osman A, Bradley KM, Bonney L, McGowan DR, Davies J, Prime MS, Hassan AB. (2024). Challenges and solutions to system-wide use of precision oncology as the standard of care paradigm. Cambridge Prism: Precision Medicine 2: e4. https://doi.org/10.1017/pcm.2024.1

Lauwerends LJ, Galema HA, Hardillo JAU, Sewnaik A, Monserez D, van Driel P, Verhoef C, Baatenburg de Jong RJ, Hilling DE, Keereweer S. (2021). Current intraoperative imaging techniques to improve surgical resection of laryngeal cancer: A systematic review. Cancers 13(8): 1895. https://doi.org/10.3390/cancers13081895

Leary D, Basran PS. (2022). The role of artificial intelligence in veterinary radiation oncology. Veterinary Radiology and Ultrasound 63(1): 903-912. https://doi.org/10.1111/vru.13162

Lee AM, Tollefson C, Shores A. (2023). Intraoperative ultrasound in intracranial surgery. In: Shores A, Brisson BA, editors, Advanced techniques in canine and feline neurosurgery, Willey Blackwell. Pp. 169-178.

Lloyd KC, Khanna C, Hendricks W, Trent J, Kotlikoff M. (2016). Precision medicine: an opportunity for a paradigm shift in veterinary medicine. Journal of American Veterinary Medical Association 248(1): 45-48. https://doi.org/10.2460/javma.248.1.45

Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. (2020). Molecular profiling for precision cancer therapies. Genome Medicine 12(1): 8. https://doi.org/10.1186/s13073-019-0703-1

Marconato L, Gelain ME, Comazzi S. (2013). The dog as a possible animal model for human non‐Hodgkin lymphoma: a review. Hematological oncology 31(1): 1-9. https://doi.org/10.1002/hon.2017

Mascagni P, Alapatt D, Sestini L, Altieri MS, Madani A, Watanabe Y, Alseidi A, Redan JA, Alfieri S, Costamagna G, Boskoski I, Padoy N, Hashimoto DA. (2022). Computer vision in surgery: from potential to clinical value. NPJ Digital Medicine 5(1): 163. https://doi.org/10.1038/s41746-022-00707-5

Mattoon JS, Bryan JN. (2013). The future of imaging in veterinary oncology: learning from human medicine. The Veterinary Journal 197(3): 541-552. https://doi.org/10.1016/j.tvjl.2013.05.022

Mayhew PD. (2014). Recent advances in soft tissue minimally invasive surgery. Journal of Small Animal Practice 55(2): 75-83. https://doi.org/10.1111/jsap.12164

McGrath S, Ghersi D. (2016). Building towards precision medicine: empowering medical professionals for the next revolution. BMC Medical Genomics 9(1): 23. https://doi.org/10.1186/s12920-016-0183-8

Mealey KL, Martinez SE, Villarino NF, Court MH. (2019). Personalized medicine: going to the dogs? Human Genetics 138(5): 467-481. https://doi.org/10.1007/s00439-019-02020-w

Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ. (2016). Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7(1): 11. https://doi.org/10.1186/s12645-016-0024-7

Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. (2020). The virtual operative assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. PloS One 15(2): e0229596. https://doi.org/10.1371/journal.pone.0229596

Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA. Rajabi R, Salimimoghdam S, Taheriazam A, Hashemi M, Samarghandian S. (2023). miRNAs as short non-coding RNAs in regulating doxorubicin resistance. Journal of Cell Communication and Signaling 17(4): 1181-1202. https://doi.org/10.1007/s12079-023-00789-0

Moiyadi AV. (2016). Intraoperative ultrasound technology in neuro-oncology practice-current role and future applications. World Neurosurgery 93: 81-93. https://doi.org/10.1016/j.wneu.2016.05.083

Morris MX, Rajesh A, Asaad M, Hassan A, Saadoun R, Butler CE. (2023). Deep learning applications in surgery: Current uses and future directions. The American Surgeon 89(1): 36-42. https://doi.org/10.1177/00031348221101490

Nagata K. (2019). A retrospective analysis of radiation oncology related scientific articles in the journal Veterinary Radiology and Ultrasound: Trends over 40 years (1976-2015). Veterinary Radiology and Ultrasound 60(3): 351-357. https://doi.org/10.1111/vru.12716

Nagaya T, Nakamura YA, Choyke PL, Kobayashi H. (2017). Fluorescence-guided surgery. Frontiers in Oncology 7: 314. https://doi.org/10.3389/fonc.2017.00314

Naithani N, Atal AT, Tilak T, Vasudevan B, Misra P, Sinha S. (2021). Precision medicine: Uses and challenges. Medical Journal Armed Forces India 77(3): 258-265. https://doi.org/10.1016/j.mjafi.2021.06.020

Nardone V, Marmorino F, Germani MM, Cichowska-Cwalinska N, Menditti VS, Gallo P, Studiale V, Taravella A, Landi M, Reginelli A, Cappabianca S, Girnyi S, Cwalinski T, Boccardi V, Goyal A, Skokowski J, Oviedo RJ, Abou-Mrad A, Marano L. (2024). The role of artificial intelligence on tumor boards: Perspectives from surgeons, medical oncologists and radiation oncologists. Current Oncology 31(9): 4984-5007. https://doi.org/10.3390/curroncol31090369

Navarrete-Welton AJ, Hashimoto DA. (2020). Current applications of artificial intelligence for intraoperative decision support in surgery. Frontiers in Medicine 14(4): 369-381. https://doi.org/10.1007/s11684-020-0784-7

Nightingale KP, Bishop M, Avitabile N, Simpson S, Freidoony L, Buckley S, Tatton-Brown K. (2025). Evaluation of the master's in genomic medicine framework: A national, multiprofessional program to educate health care professionals in NHS England. Genetics in Medicine 27(1): 101277. https://doi.org/10.1016/j.gim.2024.101277

O'Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, Boellaard R, Bohndiek SE, Brady M, Brown G, Buckley DL, Chenevert TL, . . . Waterton JC. (2017). Imaging biomarker roadmap for cancer studies. Nature Reviews Clinical Oncology 14(3): 169-186. https://doi.org/10.1038/nrclinonc.2016.162

O'Neill DG, Church DB, McGreevy PD, Thomson PC, Brodbelt DC. (2013). Longevity and mortality of owned dogs in England. Veterinary Journal 198(3): 638-643. https://doi.org/10.1016/j.tvjl.2013.09.020

Oh JH, Cho JY. (2023). Comparative oncology: overcoming human cancer through companion animal studies. Experimental & Molecular Medicine 55(4): 725-734. https://doi.org/10.1038/s12276-023-00977-3

Orencole MJ, Butler R. (2013). Fundamentals of surgical oncology in small animals. Today’s Veterinary Practice 14-18. https://todaysveterinarypractice.com/wp-content/uploads/sites/4/2016/09/T1311F01.pdf

Pang LY, Argyle DJ. (2016). Veterinary oncology: Biology, big data and precision medicine. The Veterinary Journal 213: 38-45. https://doi.org/10.1016/j.tvjl.2016.03.009

Pang Y, Wang H, Li H. (2021). Medical imaging biomarker discovery and integration towards AI-based personalized radiotherapy. Frontiers in Oncology 11: 764665. https://doi.org/10.3389/fonc.2021.764665

Penet MF, Krishnamachary B, Chen Z, Jin J, Bhujwalla ZM. (2014). Molecular imaging of the tumor microenvironment for precision medicine and theranostics. In: Pomper MG, Fisher PB, Emerging applications of molecular imaging to oncology: Advances in Cancer Research 124: 235-256. https://doi.org/10.1016/B978-0-12-411638-2.00007-0

Perera TRW, Skerrett-Byrne DA, Gibb Z, Nixon B, Swegen A. (2022). The Future of biomarkers in veterinary medicine: Emerging approaches and associated challenges. Animals 12(17): 2194. https://doi.org/10.3390/ani12172194

Petzschner FH. (2024). Practical challenges for precision medicine. Science 383(6679): 149-150. https://doi.org/10.1126/science.adm9218

Pratschke K. (2016). Principles and good practice in using oncologic surgery: Part 1. VetTimes. https://www.vettimes.com/news/vets/small-animal-vets/principles-and-good-practice-in-using-oncologic-surgery-part-1

Ren W, Ji B, Guan Y, Cao L, Ni R. (2022). Recent technical advances in accelerating the clinical translation of small animal brain imaging: Hybrid imaging, deep learning, and transcriptomics. Frontiers in Medicine 9: 771982. https://doi.org/10.3389/fmed.2022.771982

Ruan Y, Robinson NB, Khan FM, Hameed I, Rahouma M, Naik A, Oakley CT, Rong L, Girardi LN, Gaudino M. (2020). The translation of surgical animal models to human clinical research: A cross-sectional study. International Journal of Surgery 77: 25-29. https://doi.org/10.1016/j.ijsu.2020.03.023

Ruiz-Perez CA, Nakashe P, Marshall MA, Marass F, Tang T, McLennan LM, Kroll M, Flesner BK, Gray S, Rafalko JM, Grosu DS, Hicks SC, Tynan JA, Tsui DWY, Flory A, Kruglyak KM. (2024). Proof-of-concept evaluation of next-generation sequencing-based liquid biopsy for non-invasive cancer detection in cats. Frontiers in Veterinary Science 11: 1394686. https://doi.org/10.3389/fvets.2024.1394686

Sabouni E, Nejad MM, Mojtabavi S, Khoshduz S, Mojtabavi M, Nadafzadeh N, Nikpanjeh N, Mirzaei S, Hashemi M, Aref AR, Khorrami R, Nabavi N, Ertas YN, Salimimoghadam S, Zandieh MA, Rahmanian P, Taheriazam A, Hushmandi K. (2023). Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomedicine and Pharmacotherapy 160: 114395. https://doi.org/10.1016/j.biopha.2023.114395

Sadeghi MS, Sangrizeh FH, Jahani N, Abedin MS, Chaleshgari S, Ardakan AK, Baeelashaki R, Ranjbarpazuki G, Rahmanian P, Zandieh MA, Nabavi N, Aref AR, Salimimoghadam S, Rashidi M, Rezaee A, Hushmandi K. (2023). Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. Environmental Research 237(2): 117027. https://doi.org/10.1016/j.envres.2023.117027

Schmid D, Scholz VB, Kircher PR, Lautenschlaeger IE. (2022). Employing deep convolutional neural networks for segmenting the medial retropharyngeal lymph nodes in CT studies of dogs. Veterinary Radiology and Ultrasound 63(6): 763-770. https://doi.org/10.1111/vru.13132

Shaikh S. (2022). Quantitative imaging biomarkers in precision medicine. In: Advances in Imaging: Step towards Precision Medicine, Springer Singapore. Pp. 317-326. https://doi.org/10.1007/978-981-16-9535-3_26

Shaye DA, Tollefson TT, Strong EB. (2015). Use of intraoperative computed tomography for maxillofacial reconstructive surgery. JAMA Facial Plastic Surgery 17(2): 113-119. https://doi.org/10.1001/jamafacial.2014.1343

Simpson S, Rizvanov AA, Jeyapalan JN, De Brot S, Rutland CS. (2022). Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Frontiers in Veterinary Science 9: 965391. https://doi.org/10.3389/fvets.2022.965391

Singhal S. (2016). The future of surgical oncology: Image-guided cancer surgery. JAMA Surgery 151(2): 184-185. https://doi.org/10.1001/jamasurg.2015.3604

Sisodiya SM. (2021). Precision medicine and therapies of the future. Epilepsia 62(2): S90-S105. https://doi.org/10.1111/epi.16539

Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, Okamoto I, Zhou C, ….., Ramalingam SS. (2018). Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. New England Journal of Medicine 378(2): 113-125. https://doi.org/10.1056/NEJMoa1713137

Spinu-Popa EV, Cioni D, Neri E. (2021). Radiology reporting in oncology-oncologists' perspective. Cancer Imaging 21(1): 63. https://doi.org/10.1186/s40644-021-00431-5

Srisawat W, Koonyosying P, Muenthaisong A, Sangkakam K, Varinrak T, Rittipornlertrak A, Nambooppha B, Apinda N, Sthitmatee N. (2025). mRNA and protein expression of programmed cell death-ligand-1 on canine mammary gland tumour in dogs of Chiang Mai, Thailand. International Journal of Veterinary Science and Medicine 13(1): 1-11. https://doi.org/10.1080/23144599.2025.2483102

Stenzinger A, Moltzen EK, Winkler E, Molnar-Gabor F, Malek N, Costescu A, Jensen BN, Nowak F, Pinto C, Ottersen OP, Schirmacher P, Nordborg J, Seufferlein T, Frohling S, Edsjo A, Garcia-Foncillas J, Normanno N, Lundgren B, Friedman M, Bolanos N, Tatton-Brown K, Hill S, Rosenquist R. (2023). Implementation of precision medicine in healthcare-A European perspective. Journal of Internal Medicine 294(4): 437-454. https://doi.org/10.1111/joim.13698

Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. (2023). Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. Journal of Control Release 354: 503-522. https://doi.org/10.1016/j.jconrel.2023.01.028

Tanaka M, Yamaguchi S, Iwasa Y. (2020). Enhanced risk of cancer in companion animals as a response to the longevity. Scientific Reports 10(1): 19508. https://doi.org/10.1038/s41598-020-75684-4

Thamm DH. (2019). Canine cancer: Strategies in experimental therapeutics. Frontiers in Oncology 9: 1257. https://doi.org/10.3389/fonc.2019.01257

Varghese C, Harrison EM, O'Grady G, Topol EJ. (2024). Artificial intelligence in surgery. Nature Medicine 30(5): 1257-1268. https://doi.org/10.1038/s41591-024-02970-3

Varshney J, Scott MC, Largaespada DA, Subramanian S. (2016). Understanding the osteosarcoma pathobiology: A comparative oncology approach. Veterinary Science 3(1): 3. https://doi.org/10.3390/vetsci3010003

Wang ZG, Zhang L, Zhao WJ. (2016). Definition and application of precision medicine. Chinese Journal of Traumatology 19(5): 249-250. https://doi.org/10.1016/j.cjtee.2016.04.005

Ward TM, Mascagni P, Ban Y, Rosman G, Padoy N, Meireles O, Hashimoto DA. (2021). Computer vision in surgery. Surgery 169(5): 1253-1256. https://doi.org/10.1016/j.surg.2020.10.039

Wright JD. (2017). Robotic-assisted surgery: Balancing evidence and implementation. JAMA 318(16): 1545-1547. https://doi.org/10.1001/jama.2017.13696

Yeramosu T, Krivicich LM, Puzzitiello RN, Guenthner G, Salzler MJ. (2025). Concomitant procedures, black race, male sex, and general anesthesia show fair predictive value for prolonged rotator cuff repair operative time: analysis of the national quality improvement program database using machine learning. Arthroscopy: The Journal of Arthroscopic and Related Surgery 41(5): 1279-1290. https://doi.org/10.1016/j.arthro.2024.07.019

Yitbarek D, Dagnaw GG. (2022). Application of advanced imaging modalities in veterinary medicine: A review. Veterinary Medicine 13: 117-130. https://doi.org/10.2147/VMRR.S367040

Yousefirizi F, Pierre D, Amyar A, Ruan S, Saboury B, Rahmim A. (2022). AI-based detection, classification and prediction/prognosis in medical imaging: Towards radiophenomics. PET Clinics 17(1): 183-212. https://doi.org/10.1016/j.cpet.2021.09.010

Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. (2020). Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Molecular Cancer 19(1): 96. https://doi.org/10.1186/s12943-020-01219-0

Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. (2023a). Stimuli-responsive (nano) architectures for phytochemical delivery in cancer therapy. Biomedicine and Pharmacotherapy 166: 115283. https://doi.org/10.1016/j.biopha.2023.115283

Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. (2023b). Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological Functions and Therapeutic Perspectives. Pharmacological Research 187: 106582. https://doi.org/10.1016/j.phrs.2022.106582

Zaorsky NG, Churilla T, Egleston B, Fisher S, Ridge J, Horwitz E, Meyer J. (2017). Causes of death among cancer patients. Annals of Oncology 28(2): 400-407. https://doi.org/10.1093/annonc/mdw604

Zhang Y, Wu M, Zhou J, Diao H. (2023). Long non-coding RNA as a potential biomarker for canine tumors. Veterinary Sciences 10(11): 637. https://doi.org/10.3390/vetsci10110637

Downloads

Published

17-08-2025

How to Cite

Mohammadnezhad, M. ., Bagheri, M. ., Shariati Majd, S., Abdolhosseini, A. ., Panah, M. F. R. ., Rezaee, M. ., & Zandieh, M. A. (2025). Advancing precision medicine in companion animal oncology: Integrating AI, advanced radiology, and surgical innovation: Precision medicine in animal oncology. Letters In Animal Biology, 5(2), 75–86. https://doi.org/10.62310/liab.v5i2.228

Issue

Section

Review Articles
Recieved 2025-05-25
Accepted 2025-08-08
Published 2025-08-17

Most read articles by the same author(s)