Piglet survival from birth to weaning: A narrative review of associated sow and piglet characteristics and environmental factors

Piglet survival from birth to weaning

Authors

  • Rivoningo N. Mabunda Department of Animal Sciences, Tshwane University of Technology, Private bag X680, Pretoria 0001, South Africa https://orcid.org/0009-0007-1656-9364
  • Mamokoma C. Modiba Department of Animal Sciences, Tshwane University of Technology, Private bag X680, Pretoria 0001, South Africa
  • Ayodeji P. Idowu Department of Animal Sciences, Tshwane University of Technology, Private bag X680, Pretoria 0001, South Africa https://orcid.org/0000-0002-0227-3171
  • Khathutshelo A. Nephawe Department of Animal Sciences, Tshwane University of Technology, Private bag X680, Pretoria 0001, South Africa
  • Takalani J. Mpofu Department of Animal Sciences, Tshwane University of Technology, Private bag X680, Pretoria 0001, South Africa https://orcid.org/0000-0003-4688-0413

DOI:

https://doi.org/10.62310/liab.v5i1.251

Keywords:

Pre-weaning survival, Sow characteristics, Piglet Characteristics, Within-litter variation, Disease resistance, Environment

Abstract

Pre-weaning piglet mortality continues to pose a serious challenge to pig producers, with detrimental effects on animal health, welfare, performance, and overall farm success. This review examines the complex relationship between the sow and piglet characteristics and the environment that affects piglet pre-weaning survival. Due to the interrelated nature of the challenge, it is key to consider all factors when designing genetic selection and management programs. There are multiple parameters related to the sow, such as parity, body condition, maternal behavior, back-fat thickness, litter size, farrowing duration, nutritional and health status. Whereas for the piglet, the associated parameters to pre-weaning survival include birth weight and order, ability to access colostrum, sex, health, and disease resistance, blood glucose concentrations and body temperature. While large litters are a genetic option for economic gain, they are also associated with reduced survival rates attributed to higher variability in birth weight within a litter. The housing environment and management interventions contribute significantly to piglet survival rates. Because piglet survival is a complex multifactorial trait, this review highlights the necessity of an inclusive approach to combating piglet survival. Improving the survival of piglets through an integrated strategy of genetic selection, optimal environment, focused nutrition, and good management is a key to providing robust piglets that can grow and perform well throughout their lifetime. Overall, any piglet survival improvement that is to be sustainable requires the right balance of sow and piglet characteristics to optimise both production efficiency and animal welfare. Rather, the piglet survival is also important for the efficiency of production and the broader sustainable development goals (SDGs), including SDG 1: poverty reduction, SDG 2: food security, and SDG 12: responsible consumption and production.

Metrics

Metrics Loading ...

References

Alexopoulos JG, Lines DS, Hallett S, Plush KJ. (2018). A review of success factors for piglet fostering in lactation. Animals 8(3): 38. https://doi.org/10.3390/ani8030038

Alonso-Spilsbury M, Mota-Rojas D, Villanueva-García D, Martínez-Burnes J, Orozco H, Ramírez-Necoechea R, Mayagoitia AL, Trujillo ME. (2005). Perinatal asphyxia pathophysiology in pig and human: a review. Animal Reproduction Science 90: 1–30. https://doi.org/10.1016/j.anireprosci.2005.01.007

Andersen HML and Pedersen LJ. (2015). Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets. Animal 10: 128–134. https://doi.org/10.1017/S1751731115001913

Attupuram NM, Meera K, Deb R, Gupta VK. (2025). Biosecurity Measures for Swine Farms and Zoonotic Disease Mitigation. In: Deb R, Nayak J, Sengar GS, Gupta VK, editors, Emerging Zoonotic Threats from Swine: A Public Health Perspective. Springer, Singapore. Pp. 359. https://doi.org/10.1007/978-981-96-7407-7

Bai X, Plastow GS (2022). Breeding for disease resilience: opportunities to manage polymicrobial challenge and improve commercial performance in the pig industry. CABI Agriculture and Bioscience 3(1): 6. https://doi.org/10.1186/s43170-022-00073-y

Balzani A, Cordell HJ, Sutcliffe E, Edwards SA. (2015). Improving udder quality traits in sows to aid survival and performance of piglets. Animal 9(12): 1994–2004. http://theses.ncl.ac.uk/jspui/handle/10443/3192

Balzani A, Cordell HJ, Sutcliffe E, Edwards SA. (2016). Heritability of udder morphology and colostrum quality traits in swine. Journal of Animal Science 94(9): 3636–3646. https://doi.org/10.2527/jas.2016-0458

Bates JL (2015). Transmammary-delivered meloxicam in piglets undergoing castration and tail docking: impact on pharmacokinetics and pain biomarkers. Master's thesis, Iowa State University, USA. https://doi.org/10.1371/journal.pone.0113678

Baxter EM, Edwards S. (2021). Optimising sow and piglet welfare during farrowing and lactation. In: Edwards S, editor, Understanding the behaviour and improving the welfare of pigs. Burleigh Dodds Science Publishing, London. Pp. 121-176. https://doi.org/10.19103/AS.2020.0081.04

Baxter EM, Edwards SA. (2018). Piglet mortality and morbidity: inevitable or unacceptable? In: Spinka M, editor, Advances in pig welfare. Woodhead Publishing, London, UK. Pp. 73–100. https://doi.org/10.1016/B978-0-08-101012-9.00003-4

Baxter EM, Jarvis S, Palarea-Albaladejo J, Edwards SA. (2012). The weaker sex? The propensity for male-biased piglet mortality. Plos One 7(1): p.e30318. https://doi.org/10.1371/journal.pone.0030318

Baxter EM, Rutherford KMD, D’Eath RB, Arnott G, Turner SP, Sandøe P. (2013). The welfare implications of large litter size in the domestic pig II: management factors. Animal Welfare 22: 219-238. https://doi.org/10.7120/09627286.22.2.219

Beaulieu AD, Aalhus JL, Williams NH, Patience JF. (2010). Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, and eating quality of pork. Journal of Animal Science 88: 2767–2778. https://doi.org/10.2527/jas.2009-2222

Bérard J, Kreuzer M, Bee G. (2010). In large litters birth weight and gender is decisive for growth performance but less for carcass and pork quality traits. Meat Science 86(3): 845-851. https://doi.org/10.1016/j.meatsci.2010.07.007

Bienboire-Frosini C, Muns R, Marcet-Rius M, Gazzano A, Villanueva-García D, Martínez-Burnes J, Domínguez-Oliva A, Lezama-García K, Casas-Alvarado A, Mota-Rojas D. (2023). Vitality in newborn farm animals: adverse factors, physiological responses, pharmacological therapies, and physical methods to increase neonate vigor. Animals 13: 1542. https://doi.org/10.3390/ani13091542

Björkman S, Grahofer A. (2021). Tools and protocols for managing hyperprolific sows at parturition: Optimizing piglet survival and sows’ reproductive health. In: Aral F, Payan-Carreira R, Quaresma M, editors, Animal Reproduction in Veterinary Medicine. IntechOpen. https://doi.org/10.5772/intechopen.91337

Björkman S, Oliviero C, Rajala-Schultz PJ, Soede NM, Peltoniemi OAT. (2017). The effect of litter size, parity and farrowing duration on placenta expulsion and retention in sows. Theriogenology 92: 36-44. https://doi.org/10.1016/j.theriogenology.2017.01.003

Blavi L, Solà-Oriol D, Llonch P, López-Vergé S, Martín-Orúe SM, Pérez JF. (2021). Management and feeding strategies in early life to increase piglet performance and welfare around weaning: A review. Animals 11(2): 302. https://doi.org/10.3390/ani11020302

Buthelezi N L, Mtileni B, Nephawe KA, Modiba MC, Mpedi H, Idowu PA, Mpofu TJ (2024a). Effects of parity, season of birth, and sex on within-litter variation and pre-weaning performance of F1 Large White× Landrace pigs. Veterinary World 17(7): 1459. https://doi.org/10.14202/vetworld.2024.1459-1468

Buthelezi NL, Mtileni B, Nephawe KA, Idowu PA, Modiba MC, Mpedi H, Mpofu TJ. (2024b). The impact of parity, litter size and birth weight variations within a litter on piglet pre-weaning performance. Czech Journal of Animal Science 69(7): 255-268. https://doi.org/10.17221/36/2024-CJAS

Cabrera RA, Lin X, Campbell JM, Moeser AJ, Odle J. (2012). Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. Journal of Animal Science and Biotechnology 3: 42. https://doi.org/10.1186/2049-1891-3-42

Camp Montoro J, Manzanilla EG, Solà-Oriol D, Muns R, Gasa J, Clear O, Calderón Díaz JA. (2020). Predicting productive performance in grow-finisher pigs using birth and weaning body weight. Animals 10(6): 1017. https://doi.org/10.3390/ani10061017

Carnevale RF, Muro, BB, Pierozan CR, Monteiro MS, Leal DF, Poor AP, Alves LK, Gomes NA, Silva CA, Maes D. (2023). Peripheral glycemia and farrowing traits in pigs: An observational study. Livestock Science 270: 105203. https://doi.org/10.1016/j.livsci.2023.105203

Castellanos ASB. (2025). A Multifactorial Approach to Improve Piglet Health and Survival. Master's thesis, South Dakota State University. https://openprairie.sdstate.edu/etd2/1516

Ceballos MC, Rocha Góis KC, Parsons TD, Pierdon M. (2021). Impact of duration of farrowing crate closure on physical indicators of sow welfare and piglet mortality. Animals 11(4): 969. https://doi.org/10.3390/ani11040969

Chidgey KL. (2024). Space allowance for growing pigs: Animal welfare, performance and on-farm practicality. Animal 18: 100890. https://doi.org/10.1016/j.animal.2023.100890

Chu Thinh T, Zaalberg RM, Bovbjerg H, Jensen J, Villumsen TM. (2022). Genetic variation in piglet mortality in outdoor organic production systems. Animal Welfare 31(2): 345-356. https://doi.org/10.1016/j.animal.2022.100529

Clapperton M, Glass EJ, Bishop SC. (2008). Pig peripheral blood mononuclear leucocyte subsets are heritable and genetically correlated with performance. Animal 2(10): 1575–1584. https://doi.org/10.1017/S1751731108002929

Corrales-Hernández AA, Roldán-Santiago P, Bonilla-Jaime H, De la Cruz-Cruz LA, Limón-Morales O, Orozco-Gregorio H, Pineda-Reyes R. (2025). A review: influence of the sow’s parity on farrowing and neonate performance. Frontiers in Animal Science 6: 1568955. https://doi.org/10.3389/fanim.2025.1568955

De la Cruz-Cruz LA, Limón-Morales O, Orozco-Gregorio H, Roldán-Santiago P, Bonilla-Jaime H. (2024). Importance of selected nutrients and additives in the feed of gestating sows to support fetal growth and sow metabolism. Animals 14(13): 1858. https://doi.org/10.3390/ani14030418

Decaluwé R, Maes D, Declerck I, Cools A, Wuyts B, De Smet S, Janssens GPJ. (2013). Changes in back fat thickness during late gestation predict colostrum yield in sows. Animal 7: 1999-2007. https://doi.org/10.1017/S1751731113001791

Declerck I, Dewulf J, Sarrazin S, Maes D. (2016). Long-term effects of colostrum intake in piglet production. Journal of Animal Science 94(4): 1633–1643. https://doi.org/10.2527/jas.2015-9907

Declerck I, Sarrazin S, Dewulf J, Maes D. (2017). Effects of colostrum intake and birth weight on piglet survival and growth. Livestock Science 201: 181–190. https://doi.org/10.1016/j.livsci.2017.05.009

Dekkers JCM, Mathur PK, Knol EF. (2011). Genetic improvement of the pig. In: Rothschild MF, Ruvinsky A, editors, The genetics of the pig. 2nd ed. Wallingford: CAB International. Pp. 390–425. https://doi.org/10.1079/9781845937560.0390

Devillers N, Le Dividich J, Prunier A. (2011). Influence of colostrum intake on piglet survival and immunity. Animal 5(10): 1605-1612. https://doi.org/10.1017/S175173111100067X

Diehl B, Oster M, Vernunft A, Wimmers K, Bostedt H. (2022). Intrinsic challenges of neonatal adaptation in swine. Archives Animal Breeding 65(4): 427-438. https://doi.org/10.5194/aab-65-427-2022

Dominguez JM, Manzanero JES, Lontoc-Junsay CA, Sangel PP. (2020). Relationship of Udder Morphometric Traits to Mothering Ability of Landrace X Large White Primiparous Sows. Tropical Animal Science Journal 43(1): 11-17. https://doi.org/10.5398/tasj.2020.43.1.11

Dos Santos MC, Silva KF, Bastos APA, Félix AP, Oliveira SG, Maiorka A. (2023). Effect of yeast extracted β-glucans on the immune response and reproductive performance of gilts in the adaptation, gestation, and lactation periods. Animal Feed Science and Technology 301: 115510. https://doi.org/10.1016/j.livsci.2023.105289

Dumniem N, Boonprakob R, Parsons TD, Tummaruk P. (2023). Pen versus crate: a comparative study on the effects of different farrowing systems on farrowing performance, colostrum yield and piglet preweaning mortality in sows under tropical conditions. Animals 13(2): 233. https://doi.org/10.3390/ani13020233

Earnhardt-San AL, Gray KA, Knauer MT. (2023). Genetic parameter estimates for teat and mammary traits in commercial sows. Animals 13(15): 2400. https://doi.org/10.3390/ani13152400

Edwards SA, Baxter EM. (2015). Piglet mortality: causes and prevention. In: The gestating and lactating sow. Wageningen Academic, pp. 253-278. https://doi.org/10.3920/9789086868032_012

Einarsson S, Sjunnesson Y, Hultén F, Eliasson-Selling L, Dalin AM, Lundeheim N, Magnusson U. (2014). A 25 years’ experience of group-housed sows – reproduction in animal welfare-friendly systems. Acta Veterinaria Scandinavica 56: 37. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20183121473

Engblom L, Lundeheim N, Dalin AM, and Andersson K (2007). Sow removal in Swedish commercial herds. Livestock Science 106: 76–86. https://doi.org/10.2527/2003.813594x

Ferrari CV, Sbardella PE, Bernardi ML, Coutinho ML, Vaz Jr IS, Wentz I, Bortolozzo FP. (2014). Effect of birth weight and colostrum intake on mortality and performance of piglets after cross-fostering in sows of different parities. Preventive Veterinary Medicine 114: 259–266. https://doi.org/10.1016/j.prevetmed.2014.02.013

Feyera T, Pedersen TF, Krogh U, Foldager L, Theil PK. (2018). Impact of sow energy status during farrowing on farrowing kinetics, frequency of stillborn piglets, and farrowing assistance. Journal of Animal Science 96(6): 2320-2331. https://doi.org/10.1093/jas/sky141

Fix JS, Cassady JP, Holl JW, Herring RD, See DD, Cline MT, Vallet TJ. (2010). Effect of piglet birth weight on survival and quality of commercial market pigs. Journal of Animal Science 88(10): 3171–3178. https://doi.org/10.1016/j.livsci.2010.05.007

Franczak A, Zglejc K, Waszkiewicz E, Wojciechowicz B, Martyniak M, Sobotka W, Okrasa S, Kotwica G. (2017). Periconceptional undernutrition affects in utero methyltransferase expression and steroid hormone concentrations in uterine flushings and blood plasma during the peri-implantation period in domestic pigs. Reproduction, Fertility, and Development 29: 1499–1508. https://doi.org/10.1071/RD16124

Garcia A, McGlone JJ. (2018). Welfare of weaned piglets. In: Wiseman J, editor, Achieving sustainable production of pig meat Volume 3. Burleigh Dodds Science Publishing, London. Pp. 245-270. https://www.taylorfrancis.com/chapters/edit/10.1201/9781351114509-14/welfare-weaned-piglets-arlene-garcia-john-mcglone-texas-tech-university-usa

Gebhardt JT, Tokach MD, Dritz SS, DeRouchey JM, Woodworth JC, Goodband RD, Henry SC. (2020). Postweaning mortality in commercial swine production II: Review of infectious contributing factors. Translational Animal Science 4(2): 485-506. https://doi.org/10.1093/tas/txaa068

Geijer-Simpson AV. (2022). The sex biased litter in utero and its effect on post-natal health, development, and reproductive capacity of the commercial pig. Doctoral dissertation, University of Leeds. https://etheses.whiterose.ac.uk/id/eprint/31672/

Giouleka S, Gkiouleka M, Tsakiridis I, Daniilidou A, Mamopoulos A, Athanasiadis A, Dagklis T. (2023). Diagnosis and management of neonatal hypoglycemia: A comprehensive review of guidelines. Children 10(7): 1220. https://doi.org/10.3390/children10071220

Girardie O, Bonneau M, Billon Y, Bailly J, David I, Canario L. (2023). Analysis of image-based sow activity patterns reveals several associations with piglet survival and early growth. Frontiers in Veterinary Science 9: 1051284. https://doi.org/10.3389/fvets.2022.1051284

Giuliotti L, Benvenuti MN, Giannarelli A, Mariti C, Gazzano A. (2019). Effect of different environment enrichments on behaviour and social interactions in growing pigs. Animals 9(3): 101. https://doi.org/10.3390/ani9030101

Godyn D, Nowicki J, Herbut P. (2019). Effects of environmental enrichment on pig welfare: A review. Animals 9(6): 383. https://doi.org/10.3390/ani9060383

Gopakumar CP, Deka RP. (2020). Standard operating procedures for managing pig breeding farms. https://cgspace.cgiar.org/bitstreams/8b151b87-89ea-4b22-8a03-8a57410aedc3/download

Goumon S, Illmann G, Moustsen VA, Baxter EM, Edwards SA. (2022). Review of temporary crating of farrowing and lactating sows. Frontiers in Veterinary Science 9: 811810. https://doi.org/10.3389/fvets.2022.811810

Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. (2017). Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends in Microbiology 25(10): 851-873. https://doi.org/10.1016/j.tim.2017.05.004

Hansen AV, Lauridsen C, Sørensen MT, Bach Knudsen KE, Theil PK. (2012). Effects of nutrient supply, plasma metabolites, and nutritional status of sows during transition on performance in the next lactation. Journal of Animal Science 90 (2): 466-480. https://doi.org/10.2527/jas.2011-3984

Hasan S, Orro T, Valros A, Junnikkala S, Peltoniemi O, Oliviero C. (2019). Factors affecting sow colostrum yield and composition, and their impact on piglet growth and health. Livestock Science 227: 60-67. https://doi.org/10.1016/j.livsci.2019.07.004

Heuß EM, Pröll-Cornelissen MJ, Neuhoff C, Tholen E, Große-Brinkhaus C. (2019). Invited review: Piglet survival: benefits of immunocompetence. Animal 13(10): 2114–2124. https://doi.org/10.1017/S1751731119000430

Hörtenhuber SJ, Schauberger G, Mikovits C, Schönhart M, Baumgartner J, Niebuhr K, Piringer M, Anders I, Andre K, Hennig-Pauka I, Zollitsch W. (2020). The Effect of climate change-induced temperature increase on performance and environmental impact of intensive pig production systems. Sustainability 12(22): 9442. https://doi.org/10.3390/su12229442

Huting AMS. (2020). The management of the lightweight piglets from modern pig systems. Doctoral dissertation, Newcastle University. https://theses.ncl.ac.uk/jspui/bitstream/10443/5125/1/Huting%20A%202020.pdf

Iida R, Piñeiro C, Koketsu Y. (2021). Timing and temperature thresholds of heat stress effects on fertility performance of different parity sows in Spanish herds. Journal of Animal Science 99(7): skab123. https://doi.org/10.1093/jas/skab173

Illmann G, Chaloupková H, Melišová M. (2016). Impact of sow prepartum behavior on maternal behavior, piglet body weight gain, and mortality in farrowing pens and crates. Journal of Animal Science 94: 3978-3986. https://doi.org/10.2527/jas.2016-0329

Jang JC, Oh SH. (2022). Management factors affecting gestating sows’ welfare in group housing systems- A review. Animal bioscience 35(12): 1817. https://doi.org/10.5713/ab.22.0289

Jayaraman B, Nyachoti CM. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition 3(3): 205-211. https://doi.org/10.1016/j.aninu.2017.06.002

Ju M, Wang X, Li X, Zhang M, Shi L, Hu P, Zhang B, Han X, Wang K, Li X. (2022). Effects of litter size and parity on farrowing duration of Landrace Yorkshire sows. Animals 12: 94. https://doi.org/10.3390/ani12010094

Kadirvel G, Devi YS, Naskar S, Bujarbaruah KM, Khargariah G, Banik S, Singh NS, Gonmei C. (2023). Performance of crossbred pigs with indigenous and Hampshire inheritance under a smallholder production system in the Eastern Himalayan hill region. Frontiers in Genetics 14: 1042554. https://doi.org/10.3389/fgene.2023.1042554

KilBride AL, Warris PD, Green LE. (2010). Non-infectious causes of pre-weaning mortality in piglets. Livestock Science 135(1): 1-10. https://doi.org/10.1016/j.livsci.2015.11.025

Kim KH, Hosseindoust A, Ingale SL, Lee SH, Noh HS, Choi YH, Jeon SM, Kim YH, Chae BJ. (2015). Effects of gestational housing on reproductive performance and behavior of sows with different backfat thickness. Asian-Australasian Journal of Animal Sciences 29(2): 142–148. https://doi.org/10.5713/ajas.14.0973

Klimas R, Klimienė A, Sobotka W, Kozera W, Matusevičius P. (2020). Effect of parity on reproductive performance sows of different breeds. South African Journal of Animal Science 50(3): 434-441. https://doi.org/10.4314/sajas.v50i3.10

Knol EF, Van der Spek D, Zak LJ. (2022). Genetic aspects of piglet survival and related traits: a review. Journal of Animal Science 100(6): p.skac190. https://doi.org/10.1093/jas/skac190

Krommweh MS, Rösmann P, Büscher W. (2014). Investigation of heating and cooling potential of a modular housing system for fattening pigs with integrated geothermal heat exchanger. Biosystems Engineering 121: 118–129. https://doi.org/10.1016/j.biosystemseng.2014.02.008

Lagoda ME, Marchewka J, O’Driscoll K, Boyle LA. (2022). Risk factors for chronic stress in sows housed in groups, and associated risks of prenatal stress in their offspring. Frontiers in Veterinary Science 9: 883154. https://doi.org/10.3389/fvets.2022.883154

Lanferdinia E, Andretta I, Fonseca LS, Moreira RHR, Cantarelli VS, Ferreira RA, Saraiva A, Abreu MLT. (2018). Piglet birth weight, subsequent performance, carcass traits and pork quality: A meta-analytical study. Livestock Science 214: 175–179. https://doi.org/10.1016/j.livsci.2018.05.019

Langendijk P, Fleuren M, Page G. (2023). Targeted nutrition in gestating sows: opportunities to enhance sow performance and piglet vitality. Animal 17(2): 100756. https://doi.org/10.1016/j.animal.2023.100756

Langendijk P, Plush K. (2019). Parturition and its relationship with stillbirths and asphyxiated piglets. Animals 9(11): 885. https://doi.org/10.3390/ani9110885

Langendijk P. (2021). Latest advances in sow nutrition during early gestation. Animals 11(6): 1720. https://doi.org/10.3390/ani11061720

Lavery A, Lawlor P, Magowan E, Miller H, O’Driscoll K, Berry D. (2019). An association analysis of sow parity, live-weight and back-fat depth as indicators of sow productivity. Animal 13: 622–630. https://doi.org/10.1017/S1751731118001799

Laves J, Herbrandt S, Van Meegen C, Kemper N, Fels M. (2021). Effect of pens with an elevated platform on space utilization, skin lesions and growth performance in nursery pigs. Animal 15(1): 100002. https://doi.org/10.1016/j.animal.2020.100002

Le Dividich J, Charneca R, Thomas F. (2017). Relationship between birth order, birth weight, colostrum intake, acquisition of passive immunity and pre-weaning mortality of piglets. Spanish Journal of Agricultural Research 15: e0603. https://dx.doi.org/10.5424/sjar/2017152-9921

Lorente-Pozo S, Parra-Llorca A, Torres B, Torres-Cuevas I, Nuñez-Ramiro A. (2018). Influence of sex on gestational complications, fetal-to-neonatal transition, and postnatal adaptation. Frontiers in Pediatrics 6: 1050. https://doi.org/10.3389/fped.2018.00063

Ludwiczak A, Skrzypczak E, Składanowska-Baryza J (2021). How housing conditions determine the welfare of pigs. Animals 11(12): 3484. https://doi.org/10.3390/ani11123484

Madeira-Pacheco V, Brown-Brandl TM, Rohrer GA, Vieira de Sousa R, Silva Martello L. (2024). Impacts of farrowing pen design, season, and sow parity on litter performance and piglet mortality. Animals 14(2): 325. https://doi.org/10.3390/ani14020325

Maes DG, Dewulf J, Piñeiro C, Edwards S, Kyriazakis I. (2020). A critical reflection on intensive pork production with an emphasis on animal health and welfare. Journal of Animal Science 98(1): S15-S26. https://doi.org/10.1093/jas/skz362

Malanda J, Balogh P, Dankó GN. (2019). Optimal age of breeding gilts and its impact on lifetime performance. Acta Agraria Debreceniensis (2): 15-20. https://doi.org/10.34101/actaagrar/2/3672

Marshall NE, Abrams B, Barbour LA, Catalano P, Christian P, Friedman JE, Hay Jr WW, Hernandez TL, Krebs NF, Oken E, Purnell JQ. (2022). The importance of nutrition in pregnancy and lactation: lifelong consequences. American Journal of Obstetrics and Gynecology 226(5): 607-632. https://doi.org/10.1016/j.ajog.2021.12.035

Marszałek M, Kowalski Z, Makara A. (2018). Emission of greenhouse gases and odorants from pig slurry-effect on the environment and methods of its reduction. Ecological Chemistry and Engineering 25(3): 383-394. https://doi.org/10.1515/eces-2018-0026

Matukane TH, Idowu PA, Mtileni B, Nephawe KA, Modiba MC, Mpedi H, Mpofu TJ. (2025). Domestic pig (Sus domesticus) colostrum – Composition and Quality, Effect on Neonates, Genetic Markers, and Assessment Methods: A Narrative Review. Animal Science and Genetics 21(3): 29 – 58. https://doi.org/10.5604/01.3001.0055.2138

Matukane TH, Nephawe KA, Mtileni B, Idowu PA Modiba MC, Ncube KT, Ngcobo JN, Mpedi H, Mpofu TJ. (2024). Effect of body weight and age at puberty and mating on subsequent gilt development weights, litter traits, and colostral immunoglobulin G of the F1 Large White × Landrace gilt. American Journal of Animal and Veterinary Sciences 19(4): 338–348. https://doi.org/10.3844/ajavsp.2024.338.348

Milan HFM, Campos Maia AS, Gebremedhin KG. (2019). Prediction of optimum supplemental heat for piglets. Transactions of the ASABE 62: 321–342. https://doi.org/10.13031/trans.13015

Monteiro MS, Carnevale RF, Muro BBD, Mezzina ALB, Carnino BB, Poor AP, Matajira CEC, Garbossa CAP. (2025). The role of nutrition across production stages to improve sow longevity. Animals 15: 189. https://doi.org/10.3390/ani15020189

Monteiro MS, Muro BB, Poor AP, Leal DF, Carnevale RF, Shiroma MP, Almond GW, Garbossa CA, Moreno AM, Viana CH. (2022). Effects of farrowing induction with prostaglandins on farrowing traits and piglet performance: A systematic review and meta-analysis. Theriogenology 180: 1-16. https://doi.org/10.1016/j.theriogenology.2021.12.010

Morello G, Lay Jr DC, Rodrigues LHA, Richert BT, Marchant-Forde JN. (2018). Microenvironments in swine farrowing rooms: the thermal, lighting, and acoustic environments of sows and piglets. Scientia Agricola 75(1): 1–11. https://doi.org/10.1590/1678-992x-2016-0303

Morrone S, Dimauro C, Gambella F, Cappai MG. (2022). Industry 4.0 and precision livestock farming (PLF): an up to date overview across animal productions. Sensors 22(12): 4319. https://doi.org/10.3390/s22124319

Motaung T G, Osotsi JM, Gashew M, Ndunguru SF, Novotni-Danko G. (2024). Assessment of backfat thickness and its relationship with reproductive performance of sows – preliminary findings. Acta Agraria Debreceniensis 2: 25-30. https://doi.org/10.34101/actaagrar/2/15122

Mun HS, Ampode KMB, Lagua EB, Park HR, Kim YH, Sharifuzzaman M, Hasan MK, Yang CJ. (2023). Backfat thickness at pre-farrowing: Indicators of sow reproductive performance, milk yield, and piglet birth weight in smart farm-based systems. Agriculture 14(1): 24. https://doi.org/10.3390/agriculture14010024

Muns R, Malmkvist J, Larsen MLV, Sørensen D, Pedersen LJ. (2016). High environmental temperature around farrowing induced heat stress in crated sows. Journal of Animal Science 94(1): 377- 384. https://doi.org/10.2527/jas.2015-9623

Muro BB, Carnevale RF, Leal DF, Almond GW, Monteiro MS, Poor AP, Schinckel AP, Garbossa CA. (2023). The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. Nutrition Research Reviews 36(2): 351-371. https://doi.org/10.1017/S0954422422000129

Nielsen CL, Krogh MA, Sørensen JT, Kongsted H. (2022). A field trial on the effect of cross-fostering on performance, clinical health and antibiotic usage during the suckling period of pigs. Preventive Veterinary Medicine 205: 105678. https://doi.org/10.1016/j.prevetmed.2022.105678

Nuntapaitoon M, Muns R, Theil PK, Tummaruk P. (2019). Factors influencing colostrum consumption by piglets and their relationship with survival and growth in tropical climates. Livestock Science 224: 31-39. https://doi.org/10.1016/j.livsci.2019.04.008

Ocepek M, Andersen IL. (2017). What makes a good mother? Maternal behavioural traits important for piglet survival. Applied Animal Behaviour Science 193: 29–36. https://doi.org/10.1016/j.applanim.2017.03.010

Oliviero C, Heinonen M, Valros A, Hälli O, Peltoniemi OAT. (2008). Effect of the environment on the physiology of the sow during late pregnancy, farrowing and early lactation. Animal Reproduction Science 105(3–4): 365–377. https://doi.org/10.1016/j.anireprosci.2007.03.015

Oliviero C, Junnikkala S, Peltoniemi O. (2019). The challenge of large litters on the immune system of the sow the piglets. Reproduction in Domestic Animals 54(1): 12–21. https://doi.org/10.1111/rda.13463

Osei SJ, Adu F. (2015). Current state of pig farms and factors influencing their commercialisation in Ghana: A case study of the Ashanti Region. Cibtech Journal of Zoology 4(3): 88–97.

Pedersen LJ, Berg P, Jørgensen G, Andersen IL. (2011). Neonatal piglet traits of importance for survival in crates and indoor pens. Journal of Animal Science 89(4): 1207-1218. https://doi.org/10.2527/jas.2010-3248

Pedersen LJ, Larsen MLV, Malmkvist J. (2016). The ability of different thermal aids to reduce hypothermia in neonatal piglets. Journal of Animal Science 94: 2151–2159. https://doi.org/10.2527/jas.2015-0219

Pedersen LJ. (2018). Overview of commercial pig production systems and their main welfare challenges. In Advances in pig welfare. Woodhead Publishing. Pp. 3-25. https://doi.org/10.1016/B978-0-08-101012-9.00001-0

Peltoniemi O, Han T, Yun J. (2021). Coping with large litters: Management effects on welfare and nursing capacity of the sow. Journal of Animal Science and Technology 63: 199–210. https://doi.org/10.5187/jast.2021.e46

Peltoniemi O, Oliviero C, Yun J, Grahofer A, Björkman S. (2020). Management practices to optimize the parturition process in the hyperprolific sow. Journal of Animal Science 98(3): S96–S106. https://doi.org/10.1093/jas/skaa140

Plastow GS. (2016). Genomics to benefit livestock production: improving animal health. Revista Brasileira de Zootecnia 45(6): 349–354. https://doi.org/10.1590/S1806-92902016000600010

Pluske JR, Turpin DL, Kim JC. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition 4(2): 187–196. https://doi.org/10.1016/j.aninu.2017.12.004

Portele K, Scheck K, Siegmann S, Feitsch R, Maschat K, Rault JL, Camerlink I. (2019). Sow-piglet nose contacts in free-farrowing pens. Animals 9(8): 513. https://doi.org/10.3390/ani9080513

Ramirez BC, Hayes MD, Condotta ICFS, Leonard SM. (2022). Impact of housing environment and management on pre-/post-weaning piglet productivity. Journal of Animal Science 100: 1–12. https://doi.org/10.1093/jas/skac142

Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R. (2020). Physiological adaptability of livestock to heat stress: an updated review. Journal of Animal Behaviour and Biometeorology 6(3): 62-71. https://doi.org/10.31893/2318-1265jabb.v6n3p62-71

Revermann R, Winckler C, Fuerst-Waltl B, Leeb C, Pfeiffer C. (2018). Assessment of viability of newborn piglets using an adjusted APGAR score. Journal of Central European Agriculture 19: 829-833. https://doi.org/10.5513/JCEA01/19.4.2332

Robbins LA, Green-Miller AR, Johnson JS, Gaskill BN. (2021). One is the coldest number: how group size and body weight affect thermal preference in weaned pigs (3 to 15 kg). Animals 11: 1447. https://doi.org/10.3390/ani11051447

Rootwelt V, Reksen O, Farstad W, Framstad T. (2012). Associations between intrapartum death and piglet, placental, and umbilical characteristics. Journal of Animal Science 90: 4289–4296. https://doi.org/10.2527/jas.2012-5238

Ross JW, Hale BJ, Seibert JT, Romoser MR, Adur MK, Keating AF, Baumgard LH. (2017). Physiological mechanisms through which heat stress compromises reproduction in pigs. Molecular Reproduction and Development 84(9): 934-945. https://doi.org/10.1002/mrd.22859

Rosvold EM, Newberry RC, Andersen IL. (2019). Early mother-young interactions in domestic sows – Nest-building material increases maternal investment. Applied Animal Behaviour Science 219: 104837. https://doi.org/10.1016/j.applanim.2019.104837

Rutherford K, Baxter E, D’Eath R, Turner S, Arnott G, Roehe R, Ask B, Sandøe P, Moustsen V, Thorup F. (2013). The welfare implications of large litter size in the domestic pig I: biological factors. Animal Welfare 22: 199–218. https://doi.org/10.7120/09627286.22.2.199

Rutherford KMD, Baxter EM, D'Eath RB, Turner SP, Arnott G, Roehe R, Ask B, Sandøe P, Moustsen VA, Thorup F, Edwards SA, Lawrence AB. (2021). The welfare implications of large litter size in the domestic pig I: Biological factors. Animal Welfare 30(3): 373–410. https://doi.org/10.7120/09627286.30.3.373

Shurson GC, Kerr BJ. (2023). Challenges and opportunities for improving nitrogen utilization efficiency for more sustainable pork production. Frontiers in Animal Science 4: 1204863. https://doi.org/10.3389/fanim.2023.1204863

Singh C, Verdon M, Cronin GM, Hemsworth PH. (2017). The behaviour and welfare of sows and piglets in farrowing crates or lactation pens. Animal 11(7): 1210–1221. https://doi.org/10.1017/S1751731116002573

Sjaastad Ø, Sand O, Hove K. (2010). Physiology of domestic animals, 2nd edn. Oslo: Scandinavian Veterinary Press. https://books.google.com/books/about/Physiology_of_Domestic_Animals.html?id=5Uw-LJlU3I8C

Slegers Y, Oolbekkink Y, Roelofs S, Van der Staay FJ, Nordquist RE. (2021). Effects of birth order on performance and affective state of pigs. Frontiers in Animal Science 2: 669692. https://doi.org/10.3389/fanim.2021.669692

Staarvik T, Framstad T, Heggelund M, Fremgaarden SB, Kielland C. (2019). Blood-glucose levels in newborn piglets and the associations between blood glucose levels, intrauterine growth restriction and pre-weaning mortality. Porcine Health Management 5: 22. https://doi.org/10.1186/s40813-019-0129-6

Stinn JP, Xin H. (2014). Heat lamp vs. heat mat as localized heat source in swine farrowing crate. Iowa State University Digital Repository, Ames, IA, USA. https://doi.org/10.31274/ans_air-180814-1213

Tan C, Huang Z, Xiong W, Ye H, Deng J, Yin Y. (2022). A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. Journal of Animal Science and Biotechnology 13(1): 28. https://doi.org/10.1186/s40104-022-00676-5

Theil PK, Farmer C, Feyera T. (2022). Physiology and nutrition of late gestating and transition sows. Journal of Animal Science 100(6): skac176. https://doi.org/10.1093/jas/skac176

Theil PK, Lauridsen C, Quesnel H. (2014). Neonatal piglet survival: Impact of sow nutrition around parturition on fetal glycogen deposition and production and composition of colostrum and transient milk. Animal 8(6): 1021–1030. https://doi.org/10.1017/S1751731114000950

Thompson RJ, Matthews S, Plötz T, Kyriazakis I. (2019). Freedom to lie: How farrowing environment affects sow lying behaviour assessment using inertial sensors. Computers and Electronics in Agriculture 157: 549-557. https://doi.org/10.1016/j.compag.2019.01.035

Thongsong B, Wiyaporn M, Kalandakanond-Thongsong S. (2019). Blood glucose, amino acid profiles and nutrient transporter gene expressions in the small intestine of low and normal birthweight piglets during the early suckling period. The Veterinary Journal 247: 1-7. https://doi.org/10.1016/j.tvjl.2019.02.006

Torrison J, Cameron R. (2019). Integumentary system: skin, hoof, and claw. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J, editors, Diseases of Swine. John Wiley & Sons. Pp. 292-312. https://doi.org/10.1002/9781119350927.ch17

Tucker BS, Craig JR, Morrison RS, Smits RJ, Kirkwood RN. (2021). Piglet viability: A review of identification and pre-weaning management strategies. Animals 11(10): 2902. https://doi.org/10.3390/ani11102902

Tucker BS, Petrovski KR, Craig JR, Morrison RS, Smits RJ, Kirkwood RN. (2023). Associations between surface and rectal temperature profiles of low-birth-weight piglets. Animals 13: 3259. https://doi.org/10.3390/ani13203259

Uddin MK, Hasan S, Peltoniemi O, Oliviero C. (2022). The effect of piglet vitality, birth order, and blood lactate on the piglet growth performances and preweaning survival. Porcine Health Management 8(1): 52. https://doi.org/10.1186/s40813-022-00299-2

Van de Pol KD, Bautista RO, Harper H, Shull CM, Brown CB, Ellis M. (2021b). Effect of rearing cross-fostered piglets in litters of either uniform or mixed birth weights on preweaning growth and mortality. Translational Animal Science 5: 1-9. https://doi.org/10.1093/tas/txab030

Van de Pol KD, Tolosa AF, Bautista RO, Willard NC, Gates RS, Shull CM. (2021a). Effects of drying and providing supplemental oxygen to piglets at birth on rectal temperature over the first 24 h after birth. Translational Animal Science 5(3): txab095. https://doi.org/10.1093/tas/txab095

Van den Bosch M, Soede N, Kemp B, van den Brand H. (2023). Sow nutrition, uterine contractions, and placental blood flow during the peri-partum period and short-term effects on offspring: a review. Animals 13(5): 910. https://doi.org/10.3390/ani13050910

Van der Waal K, Deen J. (2018). Global trends in infectious diseases of swine. Proceedings of the National Academy of Sciences of the United States of America 115(45): 11495-11500. https://doi.org/10.1073/pnas.1806068115

Vande Pol KD, Tolosa AF, Shull CM, Brown CB, Alencar SAS, Ellis M. (2020). Effect of method of drying piglets at birth on rectal temperature over the first 24 h after birth. Translational Animal Science 4(1): 1–12. https://doi.org/10.1093/tas/txaa183

Vanden Hole C, Ayuso M, Aerts P, Prims S, Van Cruchten S, Van Ginneken C. (2019). Glucose and glycogen levels in piglets that differ in birth weight and vitality. Heliyon 5(9): e02510. https://doi.org/10.1016/j.heliyon.2019.e02510

Vargovic L, Harper JA, Bunter K. (2022). Traits Defining Sow Lifetime Maternal Performance. Animals 12(18): 2451. https://doi.org/10.3390/ani12182451

Vasdal G, Andersen IL. (2012). A note on teat accessibility and sow parity - consequences for newborn piglets. Livestock Science 146(1): 91-94. https://doi.org/10.1016/j.livsci.2012.02.005

Vernunft A, Maass M, Brüssow KP. (2018). Placental characteristics of German Landrace sows and their relationships to different fertility parameters. Czech Journal of Animal Science 63(9): 339-346. https://doi.org/10.17221/23/2017-CJAS

Vodolazska D, Feyera T, Lauridsen C. (2023). The impact of birth weight, birth order, birth asphyxia, and colostrum intake per se on growth and immunity of the suckling piglets. Scientific Reports 13(1): 8057. https://doi.org/10.1038/s41598-023-35277-3

Vonnahme KA. (2018). How the maternal environment impacts fetal and placental development: implications for livestock production. Animal Reproduction 9(4): 789-797. https://www.animal-reproduction.org/article/5b5a6053f7783717068b46ca/pdf/animreprod-9-4-789.pdf

Wang L, Li D. (2024). Current status, challenges and prospects for pig production in Asia. Animal Bioscience 37(4): 742. https://doi.org/10.5713/ab.23.0303

Ward SA, Kirkwood RN, Plush KJ. (2020). Are Larger Litters a Concern for Piglet Survival or An Effectively Manageable Trait? Animals 10(2): 309. https://doi.org/10.3390/ani10020309

Wongwaipisitkul A, Tummaruk P, Nuntapaitoon M. (2023). Farrowing assistance and peripartum management practices associated with stillbirth in commercial swine herds. Livestock Science 274: 105230. https://doi.org/10.1016/j.livsci.2023.105230

World Organisation for Animal Health (WOAH). (2019). Terrestrial Animal Health Code: Chapter 7.13 – Animal Welfare and Pig Production Systems. OIE, Paris, France.

Yun J, Valros A. (2015). Benefits of prepartum nest-building behaviour on parturition and lactation in sows – a review. Asian-Australasian Journal of Animal Sciences 28: 1519-1524. https://doi.org/10.5713/ajas.15.0174

Zeng F, Zhang S. (2023). Impacts of sow behaviour on reproductive performance: current understanding. Journal of Applied Animal Research 51(1): 256-264. https://doi.org/10.1080/09712119.2023.2185624

Zhang T, Nickerson R, Zhang W, Peng X, Shang Y, Zhou Y, Luo Q, Wen G, Cheng Z. (2024). The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health 18: 100748. https://doi.org/10.1016/j.onehlt.2024.100748

Zhang X, Wang M, He T, Long S, Guo Y, Chen Z. (2021). Effect of different cross-fostering strategies on growth performance, stress status and immunoglobulin of piglets. Animals 11(2): 499. https://doi.org/10.3390/ani11020499

Zheng P, Zhang J, Liu H, Bao J, Xie Q, Teng X. (2021). A wireless intelligent thermal control and management system for piglet in large-scale pig farms. Information Processing in Agriculture 8(2): 341–349. https://doi.org/10.1016/j.inpa.2020.09.001

Ziaeemehr B, Jandaghian Z, Ge H, Lacasse M, Moore T. (2023). Increasing solar reflectivity of building envelope materials to mitigate urban heat islands: State-of-the-art review. Buildings 13(11): 2868. https://doi.org/10.3390/buildings13112868

Zindove TJ, Dzomba EF, Chimonyo M. (2013). Effects of within-litter birth weight variation on performance at three weeks of age and at weaning in a Large White × Landrace sow herd. Livestock Science 155: 348–354. https://doi.org/10.1016/j.livsci.2013.04.013

Zindove TJ, Mutibvu T, Shoniwa AC, Takaendesa EL. (2021). Relationships between litter size, sex ratio and within-litter birth weight variation in a sow herd and consequences on weaning performance. Translational Animal Science 5(3): txab132. https://doi.org/10.1093/tas/txab132

Zou T, Wei W, Cao S, Zhang H, Liu J. (2020). Effects of dietary fat sources during late gestation on colostrum quality and mammary gland inflammation in lipolysaccharide-challenged sows. Animals 10(2): 319. https://doi.org/10.3390/ani10020319

Downloads

Published

09-11-2025

How to Cite

Mabunda, R. N., Modiba, M. C., Idowu, A. P., Nephawe , K. A., & Mpofu, T. J. (2025). Piglet survival from birth to weaning: A narrative review of associated sow and piglet characteristics and environmental factors: Piglet survival from birth to weaning. Letters In Animal Biology, 5(1), 100–113. https://doi.org/10.62310/liab.v5i1.251

Issue

Section

Review Articles
Recieved 2025-08-28
Accepted 2025-11-02
Published 2025-11-09