Effect of diets with alfalfa, chilca, and dill on the performance, physicochemical, and sensory quality of meat in native guinea pigs
Guinea pig nutrition and meat quality
DOI:
https://doi.org/10.62310/liab.v5i1.266Keywords:
Cavia porcellus, Alternative forages, Baccharis latifolia (chilca), Anethum graveolens (dill), Carcass traits, Meat qualityAbstract
This study evaluated the effect of diets based on alfalfa (Medicago sativa), chilca (Baccharis latifolia), and dill (Anethum graveolens) on carcass yield, physicochemical characteristics, fatty acid profile, and sensory acceptance of meat from female native guinea pigs (Cavia porcellus). A total of 72 animals were distributed into three treatments (n = 24 each) over a 90-day period, corresponding to diets based on alfalfa (control), chilca, and dill. Live weight, hot and cold carcass weight, proximate composition, pH, color, water-holding capacity, cooking losses, and lipid profile (by GC-FID) were evaluated. A semi-trained panel (n = 30) assessed sensory attributes of meat (flavor, juiciness, tenderness, and overall acceptability). Data were analyzed using ANOVA, non- parametric tests, and equivalence testing (TOST; equivalence margin ±0.5 points). Results showed that carcass yield and proximate composition remained within commercial ranges across all diets. Dill significantly increased the proportion of PUFA and n-3 fatty acids, improved water-holding capacity, and enhanced some sensory attributes, while chilca maintained performance comparable to alfalfa. Equivalence tests confirmed that chilca was sensorially equivalent to alfalfa, and dill was equivalent in most attributes except flavor. These findings demonstrate that both chilca and dill are viable and nutritionally balanced alternatives to alfalfa, supporting sustainable guinea pig production. Moreover, the use of chilca and dill could contribute to improving food self- sufficiency at different times of the year when alfalfa is scarce, reducing production costs and strengthening the sustainability of livestock systems of small producers.
Metrics
References
Agrocalidad. (2020). Bienestar Animal de faenamiento de animales de producción. Agencia de regulación y control fito y zoosanitario. Retrieved from https://www.agrocalidad.gob.ec/wp-content/uploads/2023/03/Faenamiento_compressed.pdf
Alagón G, Tupayachi G, Villacorta W, Taco C, Jancco M, Zuniga E, López-Luján MdC, Ródenas L, Moya VJ, Martínez-Paredes E, Blas E, Pascual JJ. (2024). Nutritive value of some concentrate feedstuffs for guinea pigs (Cavia porcellus). Animals 14(21): 3142. https://doi.org/10.3390/ani14213142
AOAC. (2000). Official Methods of Analysis of AOAC International. 17th Edition. Association of Official Analytical Chemists International, Gaithersburg, MD, USA.
Bacca-Acosta PP, Obando-Enriquez BG, Borja-Tintinago JJ, Lerma Lasso JL, Meneses-Estrada EV, Cadena-Pastrana ÁM, Castro-Rincón E. (2025). Nutritional characterization of tree and shrub species for silvopastoral systems in a Colombian Andean-Amazon region. Revista De Ciencias Agrícolas 42(2): e2262. https://doi.org/10.22267/rcia.20254202.262
Bermúdez F, Álvarez F, Guevara R, Torres C, Peña M. (2023). Peso final y calidad de carnes en cuyes alimentados con diferentes niveles de orégano en el balanceado. Revista Producción Animal 35(2): 32–42. https://revistas.reduc.edu.cu/index.php/rpa/article/view/e45
Cardona JL. (2020). La alimentación estratégica promueve la sostenibilidad del sistema productivo del cuy. Agronet, Centro de Investigación Obonuco. https://www.agrosavia.co/noticias/la-alimentaci%c3%b3n-estrat%c3%a9gica-promueve-la-sostenibilidad-del-sistema-productivo-del-cuy
Chirinos D, Castro J, Álvaro P, Quispe R, García E, Ríos E. (2024). The nutritional value of biowaste bovine slaughterhouse meals for monogastric species feeding: The guinea pig as an animal model. Animals 14(7): 1129. https://doi.org/10.3390/ani14071129
Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers, New York, USA.
Escobar F, Espinoza T, Hinojosa R, De la Cruz R. (2023). Sustitución parcial y total de alfalfa fresca por heno en la alimentación de cuyes (Cavia porcellus) en crecimiento y engorde: una alternativa para la época de estiaje. Journal of the Selva Andina Animal Science 10(1): 16-29. https://doi.org/10.36610/j.jsaas.2023.100100016
Goicochea-Vargas J, Salvatierra-Alor M, Acosta-Pachorro F, Rondón-Jorge W, Cajacuri-Aquino J, Herrera-Briceño A, Morales-Parra E, Mialhe E, Silva M, Ratto M. (2025). Effects of oral administration of native lactic acid bacteria with probiotic potential on productive parameters and meat quality of fattening guinea pigs (Cavia porcellus). Open Veterinary Journal 15(4): 1576-1584. https://doi.org/10.5455/OVJ.2025.v15.i4.8
Guevara J, Rojas S, Carcelen F, Seminario L. (2016). Enriquecimiento de la Carne de Cuy (Cavia porcellus) con Ácidos Grasos Omega-3 Mediante Dietas con Aceite de Pescado y Semillas de Sacha Inchi (Plukenetia volubilis). Revista de Investigaciones Veterinarias del Perú 27 (45). https://doi.org/10.15381/rivep.v27i1.11450
He P, Lei Y, Zhang K, Zhang R, Bai Y, Li Z, Li J, shi J, C Q, Ma Y, Zhang X, Liu L, Lei Z. (2023). Dietary oregano essential oil supplementation alters meat quality, oxidative stability, and fatty acid profiles of beef cattle. Meat Science 205(1): 109317. https://doi.org/10.1016/j.meatsci.2023.109317
Herrera E, Petrusan J-I, Salvá-Ruiz B, Novak A, Cavalcanti K, Aguilar V, Heinz V, Smetana S. (2022). Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source. Sustainability 14(1): 1292. https://doi.org/10.3390/su14031292
Herrera H, Nino J, Torrel T, Vargas L. (2024). Effect of alfalfa, concentrate and ryegrass diets on guinea pig production variables. Revista de Investigaciones Agropecuarias 50(3): 155-160. https://dx.doi.org/10.58149/9drd-9c51
Keller M, Reidy B, Scheurer A, Eggerschwiler L, Morel I, Giller K. (2021). La harina de soya puede reemplazarse por habas, torta de semillas de calabaza y espirulina, o incluso eliminarse por completo, en una dieta a base de forraje para toros de engorde con el fin de lograr un rendimiento, una canal y una calidad de carne. Animals 11(1): 1588. https://doi.org/10.3390/ani11061588
López M. (2025). Características físico-químicas de carcasas de cuy (Cavia porcellus L.) derivados de dos tipos de alimentación, evaluados en diferentes espacios de tiempo. MSc Thesis, Universidad Nacional de Cajamarca, Cajamarca, Peru. https://repositorio.unc.edu.pe/handle/20.500.14074/8095
Milenković L, Ilić ZS, Stanojević L, Danilović B, Šunić L, Kevrešan Ž, Stanojević J, Cvetković D. (2024). Chemical composition and bioactivity of dill seed (Anethum graveolens L.) essential oil from plants grown under shading. Plants13(6): 88. https://doi.org/10.3390/plants13060886
Mujović M, Šojić B, Peulić T, Kocić-Tanackov S, Ikonić P, Božović D, Teslić N, Županjac M, Novaković S, Jokanović M, skaljac S, Pavlic B. (2024). Effects of dill (Anethum graveolens) essential oil and lipid extracts as novel antioxidants and antimicrobial agents on the quality of beef burger. Foods 13(6): 896. https://doi.org/10.3390/foods13060896
Muñoz Zambrano MC, Vargas Zambrano PA. (2024). Parámetros físicos y químicos de la transformación de lacarne de cuy (Cavia porcellus). Journal Of Science And Research 9(4): 1-13. https://doi.org/10.5281/zenodo.13909847
National Research Council (NRC). (1995). Nutrient Requirements of Laboratory Animals (4th revised ed.). National Academies Press, Washington, DC, USA.
Zamora S, Callacná M. (2017). Parámetros productivos de cuyes (Cavia porcellus) suplementados con harina de sangre bovina. Revista de Investigación en Ciencia y Biotecnología Animal 1(1):47–52. https://doi.org/10.25127/ricba.20171.175
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrés Paredes-Moya, Ivette Larrea, Andrea Maliza, Alberto Bustillos, Diana Avilés-Esquivel

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-11-08
Published 2025-11-13