Role of probiotics in the control of Salmonella infections in animals and humans
Probiotics in control of Salmonella infections
DOI:
https://doi.org/10.62310/liab.v5i2.202Keywords:
Salmonella, Antibiotics, Probiotics, Drug resistance, AlternativesAbstract
Salmonella infections pose a significant threat to human and animal health, leading to foodborne illnesses, economic losses in the livestock industry, and challenges in public health management. Various chemical drugs including antibiotics have been used to control Salmonella infections but overuse of these drugs has led to the emergence of multidrug-resistant strains, necessitating alternative strategies. Probiotics have emerged as the best alternative in controlling Salmonella infections because they promote gut health in both humans and animals. Probiotics are best because they are involved in enhancing modulation of gut microbiota, production of antimicrobial compounds, and immunity stimulant, thereby inhibiting Salmonella colonization and reducing infection severity. Different probiotic strains, especially Lactobacillus and Bifidobacterium, have shown efficacy in reducing Salmonella shedding and improving gut health in livestock, ultimately lowering zoonotic transmission risks. This review study explores the mechanisms by which probiotics combat Salmonella, and their various effects including antioxidant, immunomodulatory, anti-hypocholesterolemia, and anti-allergic. Understanding the role of probiotics in preventing and managing Salmonella infections can contribute to improving food safety, reducing antibiotic resistance, and enhancing animal and human health.
Metrics
References
Abou-Kassem DE, Elsadek MF, Abdel-Moneim AE, Mahgoub SA, Elaraby GM, Taha AE, Ashour EA. (2021). Growth, carcass characteristics, meat quality, and microbial aspects of growing quail fed diets enriched with two different types of probiotics (Bacillus toyonensis and Bifidobacterium bifidum). Poultry Science 100(1): 84-93. https://doi.org/10.1016/j.psj.2020.04.019
Adem J. (2022). Review of the zoonotic importance of salmonellosis and associated risk factors. Veterinary Medicine Open Journal 7(2): 62-69. https://doi.org/10.17140/VMOJ-7-169
Adil M, Nasir A, Safi SZ, Arshad M, Nadeem A, Hussain A. (2023). Manure-associated veterinary antibiotics; ecological consequences and mitigation strategies. In: Climate changes mitigation and sustainable bioenergy harvest through animal waste: sustainable environmental implications of animal waste. Springer Nature, Switzerland. pp. 505-522. https://doi.org/10.1007/978-3-031-26224-1_20
Ahansaz N, Tarrah A, Pakroo S, Corich V, Giacomini A. (2023). Lactic acid bacteria in dairy foods: Prime sources of antimicrobial compounds. Fermentation 9(11): 964. https://doi.org/10.3390/fermentation9110964
Ahire J, Jakkamsetty C, Kashikar MS, Lakshmi SG, Madempudi RS. (2021). In vitro evaluation of probiotic properties of Lactobacillus plantarum UBLP40 isolated from traditional indigenous fermented food. Probiotics and Antimicrobial Proteins 13: 1413-1424. https://doi.org/10.1007/s12602-021-09775-7
Ahmad R, Oli AN, Etando A, Sharma P, Sinha S, Chowdhury K, Haque M. (2023). Lactic acid bacteria fermented foods: Impact on immune system and consequences over type 2 diabetes mellitus. Journal of Applied Pharmaceutical Science 13(6): 018-056. https://doi.org/10.7324/JAPS.2023.142387
Ahmed B, Nawaz MA. (2024). Evaluation of anti-bacterial efficacy of nanoparticles against major mastitis-associated pathogens. Continental Veterinary Journal 4(2): 222-230. http://dx.doi.org/10.71081/cvj/2024.030
Al-Smadi K, Leite-Silva VR, Filho NA, Lopes PS, Mohammed Y. (2023). Innovative approaches for maintaining and enhancing skin health and managing skin diseases through microbiome-targeted strategies. Antibiotics 12(12): 1698 https://doi.org/10.3390/antibiotics12121698
Alagón Fernández del Campo P, De Orta Pando A, Straface JI, López Vega JR, Toledo Plata D, Niezen Lugo SF, Vázquez-López R. (2019). The use of probiotic therapy to modulate the gut microbiota and dendritic cell responses in inflammatory bowel diseases. Medical Sciences 7(2): 33. https://doi.org/10.3390/medsci7020033
Alenazy R. (2022). Antibiotic resistance in Salmonella: Targeting multidrug resistance by understanding efflux pumps, regulators and the inhibitors. Journal of King Saud University Science 34(7): 102275. https://doi.org/10.1016/j.jksus.2022.102275
Alves JL, Lemos L, Rodrigues NM, Pereira VB, Barros PAV, Canesso MCC, Faria AMC. (2023). Immunomodulatory effects of different strains of Lactococcus lactis in DSS-induced colitis. Brazilian Journal of Microbiology 54(2): 1203-1215. https://doi.org/10.1007/s42770-023-00928-0
Anjum M, Laitila A, Ouwehand AC, Forssten SD. (2022). Current perspectives on gastrointestinal models to assess probiotic-pathogen interactions. Frontiers in Microbiology 13: 831455. https://doi.org/10.3389/fmicb.2022.831455
Ansari F, Lee CC, Rashidimehr A, Eskandari S, Ashaolu TJ, Mirzakhani E, Jafari SM. (2024). The role of probiotics in improving food safety; detoxification of heavy metals and chemicals. Toxin reviews 43(1): 63-91. https://doi.org/10.1080/15569543.2023.2283768
Anuoluwa IA, Ekundayo EA, Bello OO, Oluwafemi YD, Adesina IA, Bolajoko BE. (2024). Microbial responses to shifting climate patterns. Agrobiological Records 17: 42-57. https://doi.org/10.47278/journal.abr/2024.021
Asghar T, Nawaz Y, Khan AMA, Hafeez F, Zafar MS, Rehman MT, Usama, M. (2024). Immunomodulation of nanoparticles: Unveiling immunosuppressive and anti-inflammatory properties. Letters in Animal Biology 4(2): 28-39. https://doi.org/10.62310/liab.v4i2.150
Ayuti SR, Khairullah AR, Al-Arif MA, Lamid M, Warsito SH, Moses IB, Delima M. (2024). Tackling salmonellosis: A comprehensive exploration of risk factors, impacts, and solutions. Open Veterinary Journal 14(6):1313. https://doi.org/10.5455/OVJ.2024.v14.i6.1
Azimi S, Klementiev AD, Whiteley M, Diggle SP. (2020). Bacterial quorum sensing during infection. Annual review of Microbiology 74: 201-219. https://doi.org/10.1146/annurev-micro-032020-093845
Batista KS, de Albuquerque JG, de Vasconcelos MHA, Bezerra MLR, da Silva Barbalho MB, Pinheiro RO, de Souza Aquino J. (2023). Probiotics and prebiotics: potential prevention and therapeutic target for the nutritional management of COVID-19? Nutrition Research Reviews 36(2): 181-198. https://doi.org/10.1017/S0954422421000317
Bessembayeva L, Kirkimbayeva Z, Biyashev B, Zholdasbekova A, Kuzembekova G, Sarybayeva D, Zhylkaidar A, Oryntaev K, Bakiyeva F (2024). Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus species from bovine mastitis cases in the Almaty region, Kazakhstan. International Journal of Veterinary Science 13(6): 853-861. https://doi.org/10.47278/journal.ijvs/2024.172
Bioff O, Radzinskiy V, Sorokin Y, Sachivkina N, Letifov G, Gaziev A, Kornova N, Burgasova O, Taranova M, Ibragimova A, Bobunova A. (2024). The effects of interleukin-2 substances (glutamate, glycine, arginine) on biofilm formation in multidrug-resistant Uropathogenic Escherichia coli in women with previous reproductive losses. International Journal of Agriculture and Biosciences 13(4): 753-762. https://doi.org/10.47278/journal.ijab/2024.185
Biswasroy P, Pradhan D, Sahu DK, Sahu A, Ghosh G, Rath G. (2021). Recent advances in clinical utility of probiotics in gastrointestinal tract disorders. Current Pharmaceutical Biotechnology 22(12): 1559-1573. https://doi.org/10.2174/1389201021666201029154239
Bu Y, Liu Y, Liu Y, Wang S, Liu Q, Hao H, Yi H. (2022). Screening and probiotic potential evaluation of bacteriocin-producing Lactiplantibacillus plantarum in vitro. Foods 11(11): 1575. https://doi.org/10.3390/foods11111575
Cardoso MJ, Nicolau AI, Borda D, Nielsen L, Maia RL, Møretrø T, Teixeira P. (2021). Salmonella in eggs: From shopping to consumption—A review providing an evidence‐based analysis of risk factors. Comprehensive Reviews in Food Science and Food Safety 20(3): 2716-2741. https://doi.org/10.1111/1541-4337.12753
Castro-López C, Romero-Luna HE, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. (2023). Key stress response mechanisms of probiotics during their journey through the digestive system: a review. Probiotics and Antimicrobial Proteins 15(5): 1250-1270. https://doi.org/10.1007/s12602-022-09981-x
Chang Y, Jeong CH, Cheng WN, Choi Y, Shin DM, Lee S, Han SG. (2021). Quality characteristics of yogurts fermented with short-chain fatty acid-producing probiotics and their effects on mucin production and probiotic adhesion onto human colon epithelial cells. Journal of Dairy Science 104: 7415-7425. https://doi.org/10.3168/jds.2020-19820
Chen AC, Fang TJ, Ho HH, Chen JF, Kuo YW, Huang YY, Yeh YT. (2022). A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Frontiers in Nutrition 9: 922993. https://doi.org/10.3389/fnut.2022.922993
Chen S, Zhang Y. (2023). Mechanism and application of Lactobacillus in type 2 diabetes-associated periodontitis. Frontiers in Public Health 11: 1248518. https://doi.org/10.3389/fpubh.2023.1248518
Chuong NV, Tri TL. (2024). Enhancing soil fertilizer and peanut output by utilizing endophytic bacteria and Vermicompost on arsenic-contaminated soil. International Journal of Agriculture and Bioscience 13: 596-602. https://doi.org/10.47278/journal.ijab/2024.145
Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. (2021). Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Frontiers in Immunology 12: 578386. https://doi.org/10.3389/fimmu.2021.578386
Dahshan NA, Abu-Dahab R, Khalil EA, Al-Bakri AG. (2023). Bactericidal effect of Iberin combined with photodynamic antimicrobial chemotherapy against Pseudomonas aeruginosa biofilm cultured on ex vivo wound model. Photodiagnosis and Photodynamic Therapy 44: 103841. https://doi.org/10.1016/j.pdpdt.2023.103841
de la Rosa O, Flores‐Gallegos AC, Ascacio‐Valdés JA, Sepúlveda L, Montáñez JC, Aguilar CN. (2022). Fructooligosaccharides as prebiotics, their metabolism, and health benefits. In: Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications. Wiley online library, Wallington, New Zealand, pp. 307-337. https://doi.org/10.1002/9781119702160.ch13
Dehkohneh A, Jafari P, Fahimi H. (2019). Effects of probiotic Lactobacillus paracasei TD3 on moderation of cholesterol biosynthesis pathway in rats. Iranian Journal of Basic Medical Sciences 22(9): 1004–1009. https://doi.org/10.22038/ijbms.2019.33933.8073
Di Costanzo M, Amoroso A, Canani RB. (2016). Gut microbiota as a target for food allergy. Journal of Pediatric Gastroenterology and Nutrition 63(1): S11-S13. https://doi.org/10.1097/MPG.0000000000001220
Dolgun T, Tekpak S, Ihlamur M. (2024). Nanotechnology modulation of gut microbiota for cancer treatment. Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2(2): 90-104.
Duda-Chodak A, Tarko T, Petka-Poniatowska K. (2023). Antimicrobial compounds in food packaging. International Journal of Molecular Sciences 24(3): 2457. https://doi.org/10.3390/ijms24032457
Fantinato V, Camargo HR, Sousa ALOP. (2019). Probiotics study with Streptococcus salivarius and its ability to produce bacteriocins and adherence to KB cells. Revista de Odontologia da UNESP 48: e20190029. https://doi.org/10.1590/1807-2577.02919
Fathima S, Shanmugasundaram R, Adams D, Selvaraj RK. (2022). Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods 11(10): 1401. https://doi.org/10.3390/foods11101401
Fenster K, Freeburg B, Hollard C, Wong C, Rønhave Laursen R, Ouwehand A. (2019). The production and delivery of probiotics: a review of a practical approach. Microorganisms 7(3): 83. https://doi.org/10.3390/microorganisms7030083
Fidan H, Esatbeyoglu T, Simat V, Trif M, Tabanelli G, Kostka T, Özogul F. (2022). Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. Food Bioscience 47: 101741. https://doi.org/10.1016/j.fbio.2022.101741
Galán-Relaño Á, Valero Díaz A, Huerta Lorenzo B, Gómez-Gascón L, Mena Rodríguez MÁ, Carrasco Jiménez E, Astorga Márquez RJ. (2023). Salmonella and salmonellosis: An update on public health implications and control strategies. Animals 13(23): 3666. https://doi.org/10.3390/ani13233666
Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. (2020). Mast cells and IgE in defense against lethality of venoms: possible “benefit” of allergy. Allergo Journal International 29: 46-62. https://doi.org/10.1007/s40629-020-00118-6
García-Díez J, Moura D, Grispoldi L, Cenci-Goga B, Saraiva S, Silva F, Ausina J. (2024). Salmonella spp. in domestic ruminants, evaluation of antimicrobial resistance based on the one health approach—a systematic review and meta-analysis. Veterinary Sciences 11(7): 315. https://doi.org/10.3390/vetsci11070315
Ghimpețeanu OM, Pogurschi EN, Popa DC, Dragomir N, Drăgotoiu T, Mihai OD, Petcu CD. (2022). Antibiotic use in livestock and residues in food—A public health threat: A review. Foods 11(10): 1430. https://doi.org/10.3390/foods11101430
Glago J, Tchekessi CKC, A-AK Achiamaa, Chabi NW, Tona K, Gbogbo KA. (2024). Assessment of the impact of temperature and shelf life on the microbiological quality of feed supplements enriched with probiotic bacteria. International Journal of Veterinary Science 13(3): 300-310. https://doi.org/10.47278/journal.ijvs/2023.116
Gut AM. (2022). Anti-Salmonella Properties of Kefir and Kefir yeast isolates: Potential application in infection control and prevention, Ph.D thesis, Victoria University, Melbourne, Australia.
Haile T. (2023). Review on prevalence and antimicrobial resistance of poultry Salmonella in Ethiopia. International Journal of Zoology and Animal Biology 6: 1-13. https://doi.org/10.23880/izab-16000542
Hamad GM, Amer A, el-Nogoumy B, Ibrahim M, Hassan S, Siddiqui SA. (2022). Evaluation of the effectiveness of charcoal, Lactobacillus rhamnosus, and Saccharomyces cerevisiae as aflatoxin adsorbents in chocolate. Toxins 15(1): 21. https://doi.org/10.3390/toxins15010021
Hambakodu M, Kiha AF, Ina YT. (2024). Effects of multi-nutrient block supplement on the blood hematology grazing female Kacang goats. Agrobiological Records 18: 54-60. https://doi.org/10.47278/journal.abr/2024.037
Harata G, He F, Takahashi K, Hosono A, Miyazawa K, Yoda K. (2016). Human Lactobacillus strains from the intestine can suppress IgE-mediated degranulation of rat basophilic leukemia (RBL-2H3) cells. Microorganisms 4(4): 40. https://doi.org/10.3390/microorganisms4040040
Herekar F, Sarfaraz S, Imran M, Ghouri N, Shahid S, Mahesar M. (2022). Clinical spectrum and outcomes of patients with different resistance patterns of Salmonella enterica. Pakistan Journal of Medical Sciences 38(2): 356. https://doi.org/10.12669/pjms.38.ICON-2022.5789
Huang CH, Lin YC, Jan TR. (2017). Lactobacillus reuteri induces intestinal immune tolerance against food allergy in mice. Journal of Functional Foods 31: 44-51. https://doi.org/10.1016/j.jff.2017.01.034
Imran M, T Umer, HU Rehman, M Saleem, H Farooq (2023). Anti-Inflammatory, immunomodulatory, and antioxidant activities of Allicin, Vitamin C and Doxycycline and their combination against Pasteurella multocida (a review). Continental Veterinary Journal 3(1): 9-16. https://doi.org/10.55664/Continentalvetj.2023.3.1.02
Issa NA. (2024). Evaluation the antimicrobial activity of essential oils against veterinary pathogens, multidrug-resistant bacteria and dermatophytes. Pakistan Veterinary Journal 44(2): 260-265. http://dx.doi.org/10.29261/pakvetj/2024.165
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. (2023). Reviewing the potential of probiotics, prebiotics and synbiotics: Advancements in treatment of ulcerative colitis. Frontiers in Cellular and Infection Microbiology 13: 1268041. https://doi.org/10.3389/fcimb.2023.1268041
Jang HJ, Lee NK, Paik HD. (2024). Overview of dairy-based products with probiotics: fermented or non-fermented milk drink. Food Science of Animal Resources 44(2): 255. https://doi.org/10.5851/kosfa.2023.e83
Jang WJ, Lee JM, Hasan MT, Lee BJ, Lim SG, Kong IS. (2019). Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunology 92: 719-727. https://doi.org/10.1016/j.fsi.2019.06.056
Kalita R, Pegu A, Baruah C (2023). Prospects of probiotics and fish growth promoting bacteria in aquaculture: a review. International Journal of Agriculture and Biosciences 12(4): 234-244. https://doi.org/10.47278/journal.ijab/2023.070
Kanwal N, S Aziz, S Abdullah, MS Ali, N Ahmad. (2024). Studies on the changes in antioxidant enzyme activity induced by parathion in Hypophthalmichthys molitrix. Continental Veterinary Journal 4(1): 40-45. http://dx.doi.org/10.71081/cvj/2024.006
Karabekir SC, Gultekın B, Ayan IC, Savas HB, Cuce G, Kalkan S (2024). Protective effect of astaxanthin on histopathologic changes induced by bisphenol a in the liver of rats. Pakistan Veterinary Journal 44(2): 244-251. http://dx.doi.org/10.29261/pakvetj/2024.178
Kaur H, Ali SA. (2022). Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food & Function 13(14): 7423-7447. https://doi.org/10.1039/D2FO00911K
Khaneghah AM, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, Sant’Ana AS. (2020). Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends in Food Science & Technology 95: 205-218. https://doi.org/10.1016/j.tifs.2019.11.022
Khoruts A, Hoffmann DE, Britton RA. (2020). Probiotics: promise, evidence, and hope. Gastroenterology 159(2): 409-413. https://doi.org/10.1053/j.gastro.2020.05.058
Kim H, Fugaban JII, Holzapfel WH, Todorov SD. (2022). Selection of beneficial bacterial strains with potential as oral probiotic candidates. Probiotics and Antimicrobial Proteins 14(6): 1077-1093. https://doi.org/10.1007/s12602-021-09896-z
Kryuchko TO, Tkachenko OY. (2021). An open-label study to evaluate the effects of Streptococcus salivarius K12 given as a powder formula to prevent respiratory infections in young children. Nutrafoods 1: 246–253. https://doi.org/10.17470/NF-021-0032
Lamichhane B, Mawad AM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Helmy YA. (2024). Salmonellosis: an overview of epidemiology, pathogenesis, and innovative approaches to mitigate the antimicrobial resistant infections. Antibiotics 13(1): 76. https://doi.org/10.3390/antibiotics13010076
Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, Korma SA. (2023). Probiotics: Mechanism of action, health benefits and their application in food industries. Frontiers in Microbiology 14: 1216674. https://doi.org/10.3389/fmicb.2023.1216674
Liang H, Zhang Y, Miao Z, Cheng R, Jiang F, Ze X. (2022). Anti-allergic effects of two potential probiotic strains isolated from infant feces in China. Journal of Functional Foods 92: 105070. https://doi.org/10.1016/j.jff.2022.105070
Liang T, Wu L, Xi Y, Li Y, Xie X, Fan C, Wu Q. (2021). Probiotics supplementation improves hyperglycemia, hypercholesterolemia, and hypertension in type 2 diabetes mellitus: An update of meta-analysis. Critical Reviews in Food Science and Nutrition 61(10): 1670-1688. https://doi.org/10.1080/10408398.2020.1773548
Linn YH, Thu KK, Win NHH. (2019). Effect of probiotics for the prevention of acute radiation-induced diarrhoea among cervical cancer patients: a randomized double-blind placebo-controlled study. Probiotics and Antimicrobial Proteins 11: 638-647. https://doi.org/10.1007/s12602-018-9408-9
Litvak Y, Bäumler AJ. (2019). The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS Pathogens 15(2): e1007563. https://doi.org/10.1371/journal.ppat.1007563
Liu DM, Guo J, Zeng XA, Sun DW, Brennan CS, Zhou QX, Zhou JS. (2017). The probiotic role of Lactobacillus plantarum in reducing risks associated with cardiovascular disease. International Journal of Food Science and Technology 52(1): 127-136. https://doi.org/10.1111/ijfs.13234
Liu W, Li Z, Ze X, Deng C, Xu S, Ye F. (2024). Multispecies probiotics complex improves bile acids and gut microbiota metabolism status in an in vitro fermentation model. Frontiers in Microbiology 15: 1314528. https://doi.org/10.3389/fmicb.2024.1314528
Lopez-Santamarina A, Gonzalez EG, Lamas A, Mondragon AC, Regal P, Miranda JM. (2021). Probiotics as a possible strategy for the prevention and treatment of allergies. A narrative review. Foods 10: 701. https://doi.org/10.3390/foods10040701
Ma E, An Y, Zhang G, Zhao M, Iqbal MW, Zabed HM, Qi X. (2023). Enhancing the antibacterial activity of Lactobacillus reuteri against Escherichia coli by random mutagenesis and delineating its mechanism. Food Bioscience 51: 102209. https://doi.org/10.1016/j.fbio.2022.102209
Ma J, Zhang J, Li Q, Shi Z, Wu H, Zhang H. (2019). Oral administration of a mixture of probiotics protects against food allergy via induction of CD103+ dendritic cells and modulates the intestinal microbiota. Journal of Functional Foods 55: 65-75. https://doi.org/10.1016/j.jff.2019.02.010
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. (2024). The potential impact of probiotics on human health: an update on their health-promoting properties. Microorganisms 12(2): 234. https://doi.org/10.3390/microorganisms12020234
Malabadi RB, Sadiya MR, Kolkar KP, Chalannavar RK. (2024). Pathogenic Escherichia coli (E. coli) foodborne outbreak: Detection methods and controlling measures. Magna Scientia Advanced Research and Reviews 10(1): 052-085. https://doi.org/10.55627/msarr.10.1.52-85
Marin C, Lorenzo-Rebenaque L, Laso O, Villora-Gonzalez J, Vega S. (2021). Pet reptiles: a potential source of transmission of multidrug-resistant Salmonella. Frontiers in Veterinary Science 7: 613718. https://doi.org/10.3389/fvets.2020.613718
Matzaras R, Anagnostou N, Nikopoulou A, Tsiakas I, Christaki E. (2023). The Role of Probiotics in Inflammation Associated with Major Surgery: A Narrative Review. Nutrients 15(6):1331. https://doi.org/10.3390/nu15061331
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. (2023). Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 12(1): 184. https://doi.org/10.3390/cells12010184
McLaughlin SE, Strenk SM, Fredricks DN. (2024). Bacterial vaginosis and associated bacteria. In: Tang YW, Hindiyeh MY, Liu D, Sails A, Spearman P, Zhang JR, editors, Molecular medical microbiology. Academic Press, Cambridge, Massachusetts, USA. pp. 1379-1395. https://doi.org/10.1016/B978-0-12-818619-0.00109-X
Munir A, Javed GA, Javed S, Arshad N. (2022). Levilactobacillus brevis from carnivores can ameliorate hypercholesterolemia: in vitro and in vivo mechanistic evidence. Journal of Applied Microbiology 133: 1725–1742. https://doi.org/10.1111/jam.15678
Munir F, A Shakoor, ZuD Sindhu, M Salman, M Shareef, MA Arif, MS Shafiq, AM Ali. (2023). Therapeutic potential of garlic (Allium sativum) in ruminants. In: Sindhu ZUD, Aslam B, Uslu U, Mohsin M, editors, Complementary and alternative medicine: One health perspective. FahumSci, Lahore, Pakistan. Pp. 01-09. https://doi.org/10.61748/CAM.2023/001
Neupane DP, Dulal HP, Song J. (2021). Enteric fever diagnosis: current challenges and future directions. Pathogens 10(4): 410. https://doi.org/10.3390/pathogens10040410
Noman S, Singh N. (2024). Efficacy of bigel in improving the viability of probiotic: experimental study. Sustainability, Agri, Food and Environmental Research 12(2). https://doi.org/10.7770/safer-V13N1-art514
Oleinikova Y, Badryzlova N, Alybayeva A, Yermekbay Z, Amangeldi A, Sadanov AMA. (2024). Effect of a probiotic preparation based on lactic and propionic acid bacteria on the growth of young rainbow trout Oncorhynchus mykiss in aquaculture. International Journal of Veterinary Science 13(3): 319-327. https://doi.org/10.47278/journal.ijvs/2023.107
Palaniyandi SA, Damodharan K, Suh JW, Yang SH. (2020). Probiotic characterization of cholesterol-lowering Lactobacillus fermentum MJM60397. Probiotics and Antimicrobial Proteins 12: 1161-1172. https://doi.org/10.1007/s12602-019-09585-y
Panwar H, Rokana N, Aparna SV, Kaur J, Singh A, Singh J, Puniya AK. (2021). Gastrointestinal stress as innate defence against microbial attack. Journal of Applied Microbiology 130(4): 1035-1061. https://doi.org/10.1111/jam.14836
Peng Y, Ma Y, Luo Z, Jiang Y, Xu Z, Yu R. (2023). Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Frontiers in Cellular and Infection Microbiology 13: 1254198. https://doi.org/10.3389/fcimb.2023.1254198
Pereira-Marques J, Ferreira RM, Pinto-Ribeiro I, Figueiredo C. (2019). Helicobacter pylori infection, the gastric microbiome and gastric cancer. Advances in Experimental Medicine and Biology 1149: 195-210. https://doi.org/10.1007/5584_2019_366
Pessoa WFB, Melgaço ACC, Almeida ME, Santos TF, Romano CC. (2022). Probiotics for urinary tract disease prevention and treatment. In: de Souza EL, Alves JLB, Fusco V, editors, Probiotics for Human Nutrition in Health and Disease. Academic Press, Cambridge, Massachusetts, USA. Pp. 513-536. https://doi.org/10.1016/B978-0-323-89908-6.00011-X
Pilau NN. (2022). Salmonella infection, isolation and antimicrobial resistance in diarrhoeic dogs presenting to clinics in Northwestern Nigeria. Journal of Advances in Biology & Biotechnology 25(5): 1-10. https://doi.org/10.9734/jabb/2022/v25i530279
Pinto CJ, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Dos Santos CN. (2023). Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biology 61: 102622. https://doi.org/10.1016/j.redox.2023.102622
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. (2019). Mechanisms of action of probiotics. Advances in Nutrition 10: S49–S66. https://doi.org/10.1093/advances/nmy063
Putta S, Yarla NS, Lakkappa DB, Imandi SB, Malla RR, Chaitanya AK, Chari BPV, Saka S, Vechalapu RR, Kamal MA, Tarasov VV, Chubarev VN, Kumar KS, Aliev G. (2018). Probiotics: supplements, food, pharmaceutical industry. In: Grumezescu AM, Holban AM, editors, Therapeutic, probiotic, and unconventional foods. Academic Press, Cambridge, Massachusetts, United States. Pp. 15-25. https://doi.org/10.1016/B978-0-12-814625-5.00002-9
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Wu M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy 7(1): 199. https://doi.org/10.1038/s41392-022-01056-1
Raheem A, Liang L, Zhang G, Cui S. (2021). Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Frontiers in Immunology 12: 616713. https://doi.org/10.3389/fimmu.2021.616713
Rashid MHU, Mehwish WH, Ahmad S, Ali L, Ahmad N, Ali M, Fazal H. (2024). Unraveling the combinational approach for the antibacterial efficacy against infectious pathogens using the herbal extracts of the leaves of Dodonaea viscosa and fruits of Rubus fruticosus. Agrobiological Records 16: 57-66. https://doi.org/10.47278/journal.abr/2024.012
Raza A, Abbas RZ, Karadağoğlu Ö, Raheem A, Khan AMA, Khalil MZ, Kanchev KP. (2024). Role of probiotics in increasing meat and egg production in poultry: A. review. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 30 (6): 753-760. https://doi.org/10.9775/kvfd.2024.32861
Rezaei M, Sanagoo A, Jouybari L, Behnampoo N. (2017). The effect of probiotic yogurt on blood glucose and cardiovascular biomarkers in patients with type II diabetes: a randomized controlled trial. Evidence Based Care 6: 26–35. https://doi.org/10.22038/EBCJ.2016.7984
Rizzello V, Bonaccorsi I, Dongarra ML, Fink LN, Ferlazzo G, 2011. Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. Biomedicine Research International 2011(1): 473097. https://doi.org/10.1155/2011/473097
Russo E, Giudici F, Fiorindi C, Ficari F, Scaringi S, Amedei A. (2019). Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Frontiers in Immunology 10: 2754. https://doi.org/10.3389/fimmu.2019.02754
Saber A, Alipour B, Faghfoori Z, Yari Khosroushahi A. (2017). Cellular and molecular effects of yeast probiotics on cancer. Critical Reviews in Microbiology 43: 96-115. https://doi.org/10.1080/1040841X.2016.1179622
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. (2022). Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic, and protective capabilities. Trends in Food Science & Technology 128: 278-295. https://doi.org/10.1016/j.tifs.2022.08.018
Saleena Lak, Nyam KL, Pui LP. (2024). Probiotic edible film added with aqueous clove extract milk powder. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 30(3): 375-382. https://doi.org/10.9775/kvfd.2024.30895
Salman MK, Abuqwider J, Mauriello G. (2023). Anti-quorum sensing activity of probiotics: the mechanism and role in food and gut health. Microorganisms 11(3): 793. https://doi.org/10.3390/microorganisms11030793
Salokhiddinovna XY. (2023). Influence of external factors on the male reproductive system. European Journal of Modern Medicine and Practice 3(10): 6-13.
Sehrawat N, Yadav M, Singh M, Kumar V, Sharma VR, Sharma AK. (2021). Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in Cancer Biology 70: 24-36. https://doi.org/10.1016/j.semcancer.2020.06.009
Shah NP, Dave R. (2002). Antimicrobial substances including bacteriocins produced by lactic acid bacteria. Bioscience and Microflora 21(4), 217-223. https://doi.org/10.12938/bifidus1996.21.217
Shahali Y, Dadar M. (2018). Plant food allergy: influence of chemicals on plant allergens. Food and Chemical Toxicology 115: 365-374. https://doi.org/10.1016/j.fct.2018.03.032
Shahverdi E. (2016). Probiotics and gastrointestinal diseases. International Journal of Digestive Disease 2: 1-2. https://doi.org/10.4172/2472-1891.100022
Shehata AA, Yalçın S, Latorre JD, Basiouni S, Attia YA, Abd el-Wahab A. (2022). Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms 10: 395. https://doi.org/10.3390/microorganisms10020395
Shi Y, Cui H, Wang F, Zhang Y, Xu Q, Liu D, Hou S. (2022). Role of gut microbiota in postoperative complications and prognosis of gastrointestinal surgery: A narrative review. Medicine 101(29): e29826. https://doi.org/10.1097/MD.0000000000029826
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. (2023). Beneficial bacteria isolated from food about the next generation of probiotics. Microorganisms 11(7): 1714. https://doi.org/10.3390/microorganisms11071714
Škrlec K, Pucer Janež A, Rogelj B, Štrukelj B, Berlec A. (2017). Evasin‐displaying lactic acid bacteria bind different chemokines and neutralize CXCL 8 production in Caco‐2 cells. Microbial Biotechnology 10(6): 1732-1743. https://doi.org/10.1111/1751-7915.12781
Srifani A, Mirnawati, Marlida Y, Rizal Y, Nurmiati. (2024). Isolation and characterization of cellulolytic lactic acid bacteria from soymilk waste as probiotic candidates for broiler. International Journal of Veterinary Science 13(1): 108-114. https://doi.org/10.47278/journal.ijvs/2023.067
Tagg JR, Harold LK, Jain R, Hale JD. (2023). Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing Streptococcal probiotics. Frontiers in Microbiology 14: 1161155. https://doi.org/10.3389/fmicb.2023.1161155
Tang HW, Phapugrangkul P, Fauzi HM, Tan JS. (2022). Lactic acid bacteria bacteriocin, an antimicrobial peptide effective against multidrug resistance: a comprehensive review. International Journal of Peptide Research and Therapeutics 28(14): 1-14. https://doi.org/10.1007/s10989-021-10317-6
Thakkar PN, Modi HA, Prajapati J. (2016). Therapeutic impacts of probiotics – as Magic bullet. American Journal of Biomedical Sciences 8(2): 97-113. https://doi.org/10.5099/aj160200097
Trallero OG, Serrano LH, Inglés MB, Vallés DR, Rodríguez AM. (2019). Effect of the administration of a probiotic with a combination of Lactobacillus and Bifidobacterium strains on antibiotic-associated diarrhea. Revista Española de Quimioterapia 32(3): 268–272. https://doi.org/10.37201/req/019.2019
Valeri M, Raffatellu M. (2016). Cytokines IL-17 and IL-22 in the host response to infection. Pathogens and Disease 74(9): ftw111. https://doi.org/10.1093/femspd/ftw111
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Ren X. (2024). The Anti-Inflammatory and curative exponent of probiotics: a comprehensive and authentic ingredient for the sustained functioning of major human organs. Nutrients 16(4): 546. https://doi.org/10.3390/nu16040546
Wang G, Huang W, Xia Y, Xiong Z, Ai L. (2019). Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food & function 10(3): 1684-1695. https://doi.org/10.1039/c8fo02181c
Wang J, Fang X, Wu T, Fang L, Liu C, Min W. (2020). In vitro immunomodulatory effects of acidic exopolysaccharide produced by Lactobacillus planetarium JLAU103 on RAW264. 7 macrophages. International Journal of Biological Macromolecules 156: 1308-1315. https://doi.org/10.1016/j.ijbiomac.2019.11.169
Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LM. (2021). The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13(3): 886. https://doi.org/10.3390/nu13030886
Wu Y, Zhang X, Liu X, Li Y, Han D, Pi Y, Whitmore MA, Lu X, Zhang G, Zheng J, Wang J. (2024). Strain specificity of Lactobacilli with promoted colonization by galacto-oligosaccharides administration in protecting intestinal barriers during Salmonella infection. Journal of Advanced Research 56: 1-14. https://doi.org/10.1016/j.jare.2023.03.001
Yang A, Liao Y, Zhu J, Zhang J, Wu Z, Li X, Liu Z. (2021a). Screening of anti-allergy Lactobacillus and its effect on allergic reactions in BALB/c mice sensitized by soybean protein. Journal of Functional Foods 87: 104858. https://doi.org/10.1016/j.jff.2021.104858
Yang B, Yue Y, Chen Y, Ding M, Li B, Wang L. (2021b). Lactobacillus plantarum CCFM1143 alleviates chronic diarrhea via inflammation regulation and gut microbiota modulation: a double-blind, randomized, placebo-controlled study. Frontier in Immunology 12: 746585. https://doi.org/10.3389/fimmu.2021.746585
Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. (2019). Probiotics importance and their immunomodulatory properties. Journal of Cellular Physiology 234(6): 8008-8018. https://doi.org/10.1002/jcp.27559
Youssef M, Ahmed HY, Zongo A, Korin A, Zhan F, Hady E, Li B. (2021). Probiotic supplements: their strategies in the therapeutic and prophylactic of human life-threatening diseases. International Journal of Molecular Sciences 22(20): 11290. https://doi.org/10.3390/ijms222011290
Zheng J, Reed E, Maounounen-Laasri A, Deng X, Wang SS, Ramachandran P, Wang H. (2024). Evaluation of universal preenrichment broth and comparison of rapid molecular methods for the detection of Salmonella from spent sprout irrigation water (SSIW). International Journal of Food Microbiology 411: 110527. https://doi.org/10.1016/j.ijfoodmicro.2023.110527
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ahsan Fayyaz, Jannat Fatima, Sara Mahmood, Yarfa Khurram, Gull Naz , Riffat Shamim Aslam , Ayesha Sarwar , Fatima Sarwar, Yusra Israr, Ayesha Israr, Afaq Ahmad , Abdul Rafay, Tehreem shehzad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-03-16
Published 2025-03-18