Role of metallic nanoparticles to control Avian Influenza Virus in poultry birds
Nanoparticles against Avian Influenza Virus
DOI:
https://doi.org/10.62310/liab.v5i1.197Keywords:
Avian Influenza virus, Chemicals, Alternatives, Metallic nanoparticles, AntiviralsAbstract
As known from the history of the pandemic, the Avian Influenza virus can potentially be one of the deadliest viruses of poultry. The various strains of the Avian Influenza virus also affect different animal species, including humans. Due to its continually changing genome, this virus has become more resistant to current antiviral medications and vaccinations. The development of new treatments and therapies is therefore desperately needed. The ideal cure has yet to be discovered, even if a new generation of universal vaccinations or anti-influenza medications are being produced. As a result, new control methods must be created. In veterinary medicine, nanoparticle research has gained a lot of interest in the past 20 years as a viable platform that has shown great effectiveness in substituting antiviral medications and conventional techniques. Their peculiar and unique physiochemical properties, including size, shape, charge, and surface area, enable the nanoparticles to interact and penetrate the viral capsid and host cells. Various nanoparticles such as silver, copper, gold, and zinc have demonstrated potential antiviral activity by disrupting viral coats, inhibiting viral replication, and modulate immune response. So, this review article highlights the important methods to synthesize nanoparticles and their specific antiviral mode of action against the Avian Influenza virus.
Metrics
References
Abbas A, Rasool A, Hussain S. (2024). Comparative evaluation of indigenously developed Chitosan based Haemorrhagic septicemia vaccine with commercially available vaccine (HS-50) for immunogenicity production. Continental Veterinary Journal 4(2): 158-163. http://dx.doi.org/10.71081/cvj/2024.017
Abed Y, Nehmé B, Baz M, Boivin G. (2008). Activity of the neuraminidase inhibitor A-315675 against oseltamivir-resistant influenza neuraminidases of N1 and N2 subtypes. Antiviral Research 77(2):163-166. https://doi.org/10.1016/j.antiviral.2007.08.008
Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Maqbool M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science 300: 102597. https://doi.org/10.1016/j.cis.2021.102597
AbouAitah K, Swiderska-Sroda A, Kandeil A, Salman A M, Wojnarowicz J, Ali M A, Lojkowski W. (2020). Virucidal action against avian influenza H5N1 virus and immunomodulatory effects of nanoformulations consisting of mesoporous silica nanoparticles loaded with natural prodrugs. International Journal of Nanomedicine 15: 5181-5202. https://doi.org/10.2147/IJN.S247692
Abu-Zaied MA, Elgemeie GH, Mahmoud NM. (2021). Synthesis of novel pyrimidine thioglycosides as structural analogs of favipiravir (avigan) and their antibird flu virus activity. Nucleosides, Nucleotides & Nucleic Acids 40(3): 336-356. https://doi.org/10.1080/15257770.2021.1872794
Abukabda AB, Stapleton PA, Nurkiewicz TR. (2016). Metal nanomaterial toxicity variations within the vascular system. Current Environmental Health Reports 3: 379-391. https://doi.org/10.1007/s40572-016-0112-1
Ahmed S, Ahmad M, Swami BL, Ikram S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research 7(1): 17-28. https://doi.org/10.1016/j.jare.2015.02.007
Akhreim AA, Gaballa MF, Sulaiman G, Attitalla IH. (2024). Biofertilizers production and climate changes on environmental prospective applications for some nanoparticles produced from some microbial isolates. International Journal of Agriculture and Biosciences 13(2): 196-203. https://doi.org/10.47278/journal.ijab/2024.094
Alexander DJ. (2000). A review of AI in different bird species. Veterinary Microbiology 74(1-2): 3-13. https://doi.org/10.1016/s0378-1135(00)00160-7
Ali L, Ahmed F, Khan MB, Bashir S, Nazli Z, Tariq S, Waqas M, Baloch MH. (2024). Interaction of climatic and socioeconomic drivers on transmission of dengue virus in Faisalabad, Pakistan. Agrobiological Records 15: 59-67. https://doi.org/10.47278/journal.abr/2023.049
Altaf S, Iqbal T, Salma U, Sajid M, Basit I, Sabir MZ, Talha R. (2024). Gold nanoparticles for the detection of organophosphate. Agrobiological Records 16: 11-18. https://doi.org/10.47278/journal.abr/2024.007
Anjum R, Hamid M, Khalil R and Ajmal A. (2023). Possible effect of ascorbic acid against zinc oxide nanoparticles induced hepatotoxicity in Swiss albino mice. International Journal of Agriculture and Biosciences 12(3): 193-198. https://doi.org/10.47278/journal.ijab/2023.064
Annamalai J, Ummalyma SB, Pandey A, Bhaskar T. (2021). Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environmental Science and Pollution Research 28(36): 49362-49382. https://doi.org/10.1007/s11356-021-15680-x
Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21): 3326-3337. https://doi.org/10.1002/smll.201200772
Aral Y, Yalcin C, Cevger Y, Sipahi C, Sariozkan S. (2010). Financial effects of the highly pathogenic avian influenza outbreaks on the Turkish broiler producers. Poultry Science 89(5): 1085-1088. https://doi.org/10.3382/ps.2009-00400
Arole VM, Munde SV. (2014). Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. Journal of Advances in Applied Science and Technology 1(2): 89-93.
Asghar T, Nawaz Y, Khan AMA, Hafeez F, Zafar MS, Rehman MT, Usama M. (2024). Immunomodulation of nanoparticles: unveiling immunosuppressive and anti-inflammatory properties. Letters in Animal Biology 4(2): 28-39. https://doi.org/10.62310/liab.v4i2.150
Aslam N, Ali A, Sial BE, Maqsood R, Mahmood Y, Mustafa G, Sana A. (2023). Assessing the dual impact of zinc oxide nanoparticles on living organisms: beneficial and noxious effects. International Journal of Agriculture and Biosciences 12(4): 267-276. https://doi.org/10.47278/journal.ijab/2023.076
Ayaz M, Sajid M, Khan S, Qureshi MS, Altaf UR, Naeem K, Muhammad M. (2010). Prevalence of Avian Influenza and its economic impact on poultry population of Hazara region Pakistan. Sarhad Journal of Agriculture 26(4): 629-633.
Ayuk EL, Ugwu MO, Aronimo SB. (2017). A review on synthetic methods of nanostructured materials. Chemistry Research Journal 2(5): 97-123.
Azam SE, Yasmeen F, Rashid MS, Ahmad U, Hussain S, Perveez A, Sarib M. (2023). Silver nanoparticles loaded active packaging of low-density polyethylene (LDPE), a challenge study against Listeria monocytogenes, Bacillus subtilis and Staphylococcus aurerus to enhance the shelf life of bread, meat and cheese. International Journal of Agriculture and Biosciences 12(3): 165-171. https://doi.org/10.47278/journal.ijab/2023.060
Backer JA, Van Roermund HJW, Fischer EAJ, Van Asseldonk MAPM, Bergevoet RHM. (2015). Controlling highly pathogenic avian influenza outbreaks: an epidemiological and economic model analysis. Preventive Veterinary Medicine 121(1-2): 142-150. https://doi.org/10.1016/j.prevetmed.2015.06.006
Bi Y, Wong G, Liu Y, Liu L, Gao GF, Shi Y. (2016). Ribavirin is effective against drug-resistant H7N9 influenza virus infections. Protein & cell 7(8): 611-614. https://doi.org/10.1007/s13238-016-0287-0
Burman U, Saini M, Kumar P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry 95(4): 605-612. https://doi.org/10.1080/02772248.2013.803796
Cui B, Wang LDL, Ke J, Tian Y. (2019). Chinese poultry farmers' decision‐making for avian influenza prevention: a qualitative analysis. Zoonoses and Public Health 66(6): 647-654. https://doi.org/10.1111/zph.12617
De Clercq E, Neyts J. (2007). Avian influenza A (H5N1) infection: targets and strategies for chemotherapeutic intervention. Trends in Pharmacological Sciences 28(6): 280-285. https://doi.org/10.1016/j.tips.2007.04.005
De Clercq E. (2007). Existing influenza antivirals: their mechanisms of action and potential in the face of avian influenza. In: Torrence PF, editor, Combating the threat of pandemic influenza: Drug Discovery Approaches, John Wiley & Sins. Pp. 1-37. https://doi.org/10.1002/9780470179727.ch1
El-Eskandarany MS, Al-Hazza A, Al-Hajji LA, Ali N, Al-Duweesh AA, Banyan M, Al-Ajmi F. (2021). Mechanical milling: a superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials 11(10): 2484. https://doi.org/10.3390/nano11102484
El-Hamaky AMA, Hassan AA, Wahba AKA and El Mosalamy MMEA. (2023). Influence of copper and zinc nanoparticles on genotyping characterizations of multi-drug resistance genes for some calf pathogens. International Journal of Veterinary Science 12(3): 309-317. https://doi.org/10.47278/journal.ijvs/2022.195
El-Qabbany MM, Metwally KM, Aly IR, Mahmoud S, El-Menyawy HM, Sadek ASM. (2024). Estimation of certain biochemical and immune system responses in mice with Schistosoma mansoni infection and treated with mefloquine, praziquantel and chitosan nanoparticles. International Journal of Veterinary Science 13(1): 51-57. https://doi.org/10.47278/journal.ijvs/2023.064
Ermini ML, Voliani V. (2021). Antimicrobial nano-agents: the copper age. ACS nano 15(4): 6008-6029. https://doi.org/10.1021/acsnano.0c10756
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangom S, Niqueux E, Staubach C, Terregino C, Aznar I, Gaujardo IM, Lima E, Baldinelli F. (2021). Avian influenza overview February–May 2021. EFSA Journal 19(12): e06951.https://doi.org/10.2903/j.efsa.2021.6951
Furuta Y, Komeno T, Nakamura T. (2017). Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B, 93(7): 449-463. https://doi.org/10.2183/pjab.93.027
Gashaw M. (2020). A review on AI and its economic and public health impact. International Journal of Veterinary Sciences and Technology 4(1): 15-27.
Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M, Pirhajati-Mahabadi V, Monavari SH, Ataei-Pirkooh A. (2019). Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. Journal of Biomedical Science 26: 70. https://doi.org/10.1186/s12929-019-0563-4
Graziosi G, Lupini C, Catelli E, Carnaccini, S. (2024). Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b virus infection in birds and mammals. Animals 14(9): 1372. https://doi.org/10.3390/ani14091372
Ha T, Pham TTM, Kim M, Kim YH, Park JH, Seo JH, Kim KM, Ha E. (2022). Antiviral activities of high energy E-beam induced copper nanoparticles against H1N1 influenza virus. Nanomaterials 12(2): 268. https://doi.org/10.3390/nano12020268
Hay AJ. (1989). The mechanism of action of amantadine and rimantadine against influenza viruses. In: Notkins AL, Oldstone MBA, editors, Concepts in viral pathogenesis III. Springer, New York, USA. Pp. 361-367. https://doi.org/10.1007/978-1-4613-8890-6_42
Hayat MS, Khan AMA, Shahid DA, Nasir S. (2024). The classification of depression and the role of nanomedicine in its treatment. Biological Times 3(2): 7-8
Hayden FG. (2013). Newer influenza antivirals, biotherapeutics and combinations. Influenza and Other Respiratory Viruses 7(s1): 63-75. https://doi.org/10.1111/irv.12045
Huo C, Xiao J, Xiao K, Zou S, Wang M, Qi P, Liu T, Hu Y. (2020). Pre-treatment with zirconia nanoparticles reduces inflammation induced by the pathogenic H5N1 influenza virus. International Journal of Nanomedicine: 661-674. https://doi.org/10.2147/IJN.S221667
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. (2022). Nano-antivirals: a comprehensive review. Frontiers in Nanotechnology 4: 1064615. https://doi.org/10.3389/fnano.2022.1064615
Ibrahim ES, Abdalhamed AM, Arafa AA, Eid RH, Khalil HMA, Hedia RH, Dorgham SM, Hozyen HF. (2024). In vitro and in vivo antibacterial and antibiofilm efficacy of selenium nanoparticles against Staphylococcus aureus supported with toxicopathological and behavioral studies in rats. International Journal of Veterinary Science 13(4): 490-500. https://doi.org/10.47278/journal.ijvs/2023.115
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. (2021). Synthesis, chemical–physical characterization, and biomedical applications of functional gold NPs: a review. Molecules 26(19): 5823. https://doi.org/10.3390/molecules26195823
Ilyushina NA, Govorkova EA, Webster RG. (2005). Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 341(1): 102-106. https://doi.org/10.1016/j.virol.2005.07.003
Ilyushina NA, Hay A, Yilmaz N, Boon AC, Webster RG, Govorkova EA. (2008). Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice. Antimicrobial Agents and Chemotherapy 52(11): 3889-3897. https://doi.org/10.1128/aac.01579-07
Iqbal T, Altaf S, Salma U, Fatima M, Khan MN, Farooq S, Afzal A. (2024). Cell membrane coated polymeric nanocarriers: a novel drug delivery approach for the targeted therapy of rheumatoid arthritis. Agrobiological Records 15: 91-102. https://doi.org/10.47278/journal.abr/2024.003
Irwin KK, Renzette N, Kowalik TF, Jensen JD. (2016). Antiviral drug resistance as an adaptive process. Virus Evolution 2(1): vew014. https://doi.org/10.1093/ve/vew014
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 9(1): 1050-1074. https://doi.org/10.3762/bjnano.9.98
Johnson KK, Seeger RM, Marsh TL. (2016). Local economies and highly pathogenic avian influenza. Choices 31(2). www.choicesmagazine.org/Avian_Influenza.pdf
Kausar M, Saleem Z, Azhar R, Rukhsar G, Ali M, Fan C, Khan AMA. (2023). Role of NPs in COVID-19 Management. In: Sindhu ZuD, Aslam B, Uslu U, Mohsin M, editors, Complementary and alternative medicine: One health perspective. FahumSci, Lahore, Pakistan, pp: 72-80. https://doi.org/10.61748/CAM.2023/010
Kencana GAY, Suartha IN, Juliantari PT, Tama KT, Kendran AAS, Sari TK, Agustina KK and Tenaya IWM. (2023). Avian influenza H5N1 isolated from Bali, its safety and potential as a new vaccine candidate. International Journal of Veterinary Science 12(6): 786-792. https://doi.org/10.47278/journal.ijvs/2023.023
Khan AMA, Wei CR, Fatima K, Ali A, Akram MS, Saeed Z, Shahood SA, Ullah H. (2023). Use of various types of NPs as an antioxidant for the inhibition of bacterial infections with benefits to intestinal microbiota and immune response. In: Sindhu ZuD, Aslam B, Uslu U, Mohsin M, editors, Complementary and alternative medicine: One health perspective. FahumSci, Lahore, Pakistan, pp: 81-87. https://doi.org/10.61748/CAM.2023/0011
Khan I, Saeed K, Khan I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12(7): 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
Kim H, Webster RG, Webby RJ. (2018). Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunology 31(2): 174-183. https://doi.org/10.1089/vim.2017.0141
Kim J, Yeom M, Lee T, Kim HO, Na W, Kang A, Haam S. (2020). Porous gold nanoparticles for attenuating infectivity of influenza A virus. Journal of Nanobiotechnology 18: 1-11. https://doi.org/10.1186/s12951-020-00611-8
Kode SS, Pawar SD, Cherian SS, Tare DS, Bhoye D, Keng SS, Mullick J. (2019). Selection of avian influenza A (H9N2) virus with reduced susceptibility to neuraminidase inhibitors oseltamivir and zanamivir. Virus Research 265: 122-126. https://doi.org/10.1016/j.virusres.2019.03.019
Kohut A, Ludvigsson L, Meuller BO, Deppert K, Messing ME, Galbács G, Geretovszky Z. (2017). From plasma to nanoparticles: optical and particle emission of a spark discharge generator. Nanotechnology 28(47): 475603. https://doi.org/10.1088/1361-6528/aa8f84
Kongkamnerd J, Cappelletti L, Prandi A, Seneci P, Rungrotmongkol T, Jongaroonngamsang N, De-Eknamkul W. (2012). Synthesis and in vitro study of novel neuraminidase inhibitors against avian influenza virus. Bioorganic & Medicinal Chemistry 20(6): 2152-2157. https://doi.org/10.1016/j.bmc.2012.01.026
Kulak E, Ognik K, Stępniowska A, Drażbo A. (2018). Effect of nanoparticles of silver on redox status and the accumulation of Ag in chicken tissues. Journal of the Science of Food and Agriculture 98(11): 4085-4096. https://doi.org/10.1002/jsfa.8925
Lashkov AA, Garaev TM, Rubinsky SV, Samygina V. R. (2023). Structural basis for interactions between Influenza A Virus M2 proton channel and adamantane-based antiviral drugs. Crystallography Reports 68(6): 843-851. https://doi.org/10.1134/S1063774523601090
Leyssen P, De Clercq E, Neyts J. (2008). Molecular strategies to inhibit the replication of RNA viruses. Antiviral Research 78(1): 9-25. https://doi.org/10.1016/j.antiviral.2008.01.004
Li P, Ju H, Xing Y, Zhao F, Anirudhan V, Du R, Zhan P. (2023). Identification of the imidazo [1, 2-a] pyrazine derivative A4 as a potential influenza virus nucleoprotein inhibitor. ACS Pharmacology & Translational Science 6(12): 1841-1850. https://doi.org/10.1021/acsptsci.3c00174
Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, Zhu B. (2016). Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Applied Materials & Interfaces 8(37): 24385-24393. https://doi.org/10.1021/acsami.6b06613
Liu Q, Cao L, Zhu XQ. (2014). Major emerging and re-emerging zoonoses in China: a matter of global health and socioeconomic development for 1.3 billion. International Journal of Infectious Diseases 25: 65-72. https://doi.org/10.1016/j.ijid.2014.04.003
Liu X, Chen D, Su J, Zheng R, Ning Z, Zhao M, Li Y. (2022). Selenium nanoparticles inhibited H1N1 influenza virus-induced apoptosis by ROS-mediated signaling pathways. RSC Advances 12(7): 3862-3870. https://doi.org/10.1039/D1RA08658H
Maqsood R, Ali A, BE Sial, Aslam N, Y Mehmood, G Mustafa, T Sohail and M Farhab. (2023). In vivo and in vitro genotoxic effects of zinc oxide nanoparticles (ZnO NPs): A comprehensive review. Continental Veterinary Journal 3(2):1-14. http://dx.doi.org/10.71081/cvj/2023.015
McLaughlin MM, Skoglund EW, Ison MG. (2015). Peramivir: an intravenous neuraminidase inhibitor. Expert Opinion on Pharmacotherapy 16(12): 1889-1900. https://doi.org/10.1517/14656566.2015.1066336
Mehwish, Azam SE, Muzamail S. (2024). Unveiling the future: nanotechnology's role in advanced food packaging. Agrobiological Records 15: 24-33. https://doi.org/10.47278/journal.abr/2023.045
Meng S, Yang L, Xu C, Qin Z, Xu H, Wang Y, Liu W. (2011). Recombinant chicken interferon-α inhibits H9N2 avian influenza virus replication in vivo by oral administration. Journal of Interferon & Cytokine Research 31(7): 533-538. https://doi.org/10.1089/jir.2010.0123
Mikhailova EO. (2021). Gold nanoparticles: Biosynthesis and potential of biomedical application. Journal of Functional Biomaterials 12(4): 70. https://doi.org/10.3390/jfb12040070
Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. (2017). Nanoparticles in antiviral therapy. In: Grumezescu AM, editor, Antimicrobial nanoarchitectonics: From synthesis to applications. Elsevier, Pp. 383-410. https://doi.org/10.1016/B978-0-323-52733-0.00014-8
Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan PT, Yao X. (2012). Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. International Journal of Nanomedicine 2012(7): 5007-5018. https://doi.org/10.2147/IJN.S34973
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. (2021). Influenza viruses: harnessing the crucial role of the M2 ion-channel and neuraminidase toward inhibitor design. Molecules 26(4): 880. https://doi.org/10.3390/molecules26040880
Munir F, Shakoor A, Sindhu Z, Salman M, Shareef M, Arif MA, Khan AMA. (2023). Therapeutic potential of garlic (Allium sativum) in ruminants. In: Sindhu ZuD, Aslam B, Uslu U, Mohsin M, editors, Complementary and alternative medicine: One health perspective. FahumSci, Lahore, Pakistan. https://doi.org/10.61748/CAM.2023/001
Musharrafieh R, Ma C, Wang J. (2020). Discovery of M2 channel blockers targeting the drug-resistant double mutants M2-S31N/L26I and M2-S31N/V27A from the influenza A viruses. European Journal of Pharmaceutical Sciences 141: 105124. https://doi.org/10.1016/j.ejps.2019.105124
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. (2024). Use of metallic NPs against Eimeria—the coccidiosis-causing agents: A comprehensive review. Biological Trace Element Research 1-20. https://doi.org/10.1007/s12011-024-04399-8
Mustafa S, T Batool, HUR Bajwa, M Ahmad, MS Habib, MH Tarteel, MU Hayat, MH Rehman, MAF Kasli, Z Afzal, M Aslam, I Tahir, RZ Abbas. (2023). Global prevalence and some other important aspects of Argas persicus (Ixodida-Argasidae) in commercial poultry farms – a mini review. Continental Veterinary Journal 3(1): 17-25. http://dx.doi.org/10.71081/cvj/2023.003
Mwafy A, Youssef DY and Mohamed MM. (2023). Antibacterial activity of zinc oxide nanoparticles against some multidrug-resistant strains of Escherichia coli and Staphylococcus aureus. International Journal of Veterinary Science 12(3): 284-289. https://doi.org/10.47278/journal.ijvs/2022.181
Naumenko K, Zahorodnia S, Pop CV, Rizun N. (2023). Antiviral activity of silver nanoparticles against the influenza A virus. Journal of Virus Eradication 9(2): 100330. https://doi.org/10.1016/j.jve.2023.100330
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of Nanobiotechnology 19: 59. https://doi.org/10.1186/s12951-021-00806-7
Pagadala NS. (2019). AZT acts as an anti-influenza nucleotide triphosphate targeting the catalytic site of A/PR/8/34/H1N1 RNA dependent RNA polymerase. Journal of Computer-Aided Molecular Design 33(4): 387-404. https://doi.org/10.1007/s10822-019-00189-w
Philippon DA, Wu P, Cowling BJ, Lau EH. (2020). Avian influenza human infections at the human-animal interface. The Journal of Infectious Diseases 222(4): 528-537. https://doi.org/10.1093/infdis/jiaa105
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. (2021). The crossroads between host copper metabolism and influenza infection. International Journal of Molecular Sciences 22(11): 5498. https://doi.org/10.3390/ijms22115498
Pustovalov VK. (2025). Laser melting, evaporation, and fragmentation of nanoparticles: Experiments, modeling, and applications. Nanotechnology and Precision Engineering 8(2): 025001. https://doi.org/10.1063/10.0034539
Ravindran R, Chithra ND, Deepa PE, Ajithkumar KG, Chandrasekhar L, Sreelekha K, Ghosh S. (2017). In vitro effects of caffeic acid, nortriptyline, precocene I and quercetin against Rhipicephalus annulatus (Acari: Ixodidae). Experimental and Applied Acarology 71(2): 183-193. https://doi.org/10.1007/s10493-017-0105-2
Reischak D, Rivetti Jr AV, Otaka JNP, Domingues CS, de Lima Freitas T, Cardoso FG, Camargos MF. (2023). First report and genetic characterization of the highly pathogenic avian influenza A (H5N1) virus in Cabot's tern (Thalasseus acuflavidus), Brazil. Veterinary and Animal Science 22: 100319. https://doi.org/10.1016/j.vas.2023.100319
Rukh L, Ullah S, Naqvi MAQ, Ahmad I, Nawaz MY, Shabir A, Shafiq MS, Hafeez F, Elahi E, Khan AMA. (2024). Cytotoxicity and genotoxicity induced by metal-based NPs in humans and animals. Letters in Animal Biology 4(2): 01-10. https://doi.org/10.62310/liab.v4i2.143
Saadh MJ, Aggag MM, Alboghdadly A, Kharshid AM, Aldalaen SM, Abdelrazek MA. (2021). Silver nanoparticles with epigallocatechingallate and zinc sulphate significantly inhibits avian influenza A virus H9N2. Microbial Pathogenesis 158: 105071. https://doi.org/10.1016/j.micpath.2021.105071
Saadh MJ, Aldalaen SM. (2021). Inhibitory effects of epigallocatechin gallate (EGCG) combined with zinc sulfate and silver nanoparticles on avian influenza A virus subtype H5N1. European Review for Medical & Pharmacological Sciences 25(6): 2630-2636. https://doi.org/10.26355/eurrev_202103_25427
Sarker A, Gu Z, Mao L, Ge Y, Hou D, Fang J, Wang Z. (2022). Influenza-existing drugs and treatment prospects. European Journal of Medicinal Chemistry 232: 114189. https://doi.org/10.1016/j.ejmech.2022.114189
Sartore S, Bonfanti L, Lorenzetto M, Cecchinato M, Marangon S. (2010). The effects of control measures on the economic burden associated with epidemics of avian influenza in Italy. Poultry Science 89(6): 1115-1121. https://doi.org/10.3382/ps.2009-00556
Sato SB, Kawasaki K, Ohnishi SL. (1983). Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proceedings of the National Academy of Sciences 80(11): 3153-3157. https://doi.org/10.1073/pnas.80.11.3153
Seeger RM, Hagerman AD, Johnson KK, Pendell DL, Marsh TL. (2021). When poultry take a sick leave: Response costs for the 2014–2015 highly pathogenic avian influenza epidemic in the USA. Food Policy 102: 102068. https://doi.org/10.1016/j.foodpol.2021.102068
Shi W, Fuad ARM, Li Y, Wang Y, Huang J, Du R, Yin T. (2023). Biodegradable polymeric nanoparticles increase risk of cardiovascular diseases by inducing endothelium dysfunction and inflammation. Journal of Nanobiotechnology 21(1): 65. https://doi.org/10.1186/s12951-023-01808-3
Song Z, Wang X, Zhu G, Nian Q, Zhou H, Yang D, Tang R. (2015). Virus capture and destruction by label‐free graphene oxide for detection and disinfection applications. Small 11(9-10): 1171-1176. https://doi.org/10.1002/smll.201401706
Stegeman A, Bouma A, Elbers AR, de Jong MC, Nodelijk G, de Klerk F, van Boven M. (2004). Avian influenza A virus (H7N7) epidemic in The Netherlands in 2003: course of the epidemic and effectiveness of control measures. The Journal of Infectious Diseases 190(12): 2088-2095. https://doi.org/10.1086/425583
Swayne DE, Kapczynski DR. (2016). Vaccines and vaccination for avian influenza in poultry. In: Swaynw DE, editor, Animal Influenza. John Willey & Sons. Pp. 378-434. https://doi.org/10.1002/9781118924341.ch15
Swayne DE. (2009). Avian influenza vaccines and therapies for poultry. Comparative Immunology, Microbiology and Infectious Diseases 32(4): 351-363. https://doi.org/10.1016/j.cimid.2008.01.006
Swayne DE. (2012). Impact of vaccines and vaccination on global control of avian influenza. Avian Diseases 56(4s1): 818-828. https://doi.org/10.1637/10183-041012-Review.1
Tavakoli A, Ataei-Pirkooh A, Mm Sadeghi G, Bokharaei-Salim F, Sahrapour P, Kiani SJ, Monavari SH. (2018). Polyethylene glycol-coated zinc oxide nanoparticle: an efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine 13(21): 2675-2690. https://doi.org/10.2217/nnm-2018-0089
Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S. (2013). Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Reports on Progress in Physics 76(6): 066501. https://doi.org/10.1088/0034-4885/76/6/066501
Thomas FC, Ouwerkerk T, McKercher P. (1982). Inactivation by gamma irradiation of animal viruses in simulated laboratory effluent. Applied and Environmental Microbiology 43(5): 1051-1056. https://doi.org/10.1128/aem.43.5.1051-1056.1982
Torrence PF. (2007). Combating the threat of pandemic influenza: Drug discovery approaches. John Wiley & Sons, Inc. Pp 1-309
Walter P, Welcomme E, Hallégot P, Zaluzec NJ, Deeb C, Castaing J, Tsoucaris G. (2006). Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Letters 6(10): 2215-2219. https://doi.org/10.1021/nl061493u
Wong SS, Yuen KY. (2006). Avian influenza virus infections in humans. Chest 129(1): 156-168. https://doi.org/10.1378/chest.129.1.156
Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, O’Conner ML, Marappan M, Zhao X, Miao Y, Xiang B, Zheng C. (2013). Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International Journal of Nanomedicine 8(1): 4103-4114. https://doi.org/10.2147/IJN.S53622
Yates PJ, Raimonde DS, Zhao HH, Man CY, Steel HM, Mehta N, Peppercorn AF. (2016). Phenotypic and genotypic analysis of influenza viruses isolated from adult subjects during a phase II study of intravenous zanamivir in hospitalised subjects. Antiviral Research 134: 144-152. https://doi.org/10.1016/j.antiviral.2016.08.023
Yehia N, AbdelSabour MA, Erfan AM, Ali ZM, Soliman RA, Samy A, Ahmed KA. (2022). Selenium nanoparticles enhance the efficacy of homologous vaccine against the highly pathogenic avian influenza H5N1 virus in chickens. Saudi Journal of Biological Sciences 29(4): 2095-2111. https://doi.org/10.1016/j.sjbs.2021.11.051
Yilmaz A, Heffels-Redmann U, Redmann T. (2004). Evaluation of the virucidal efficacy of two chemical disinfectants against avian influenza virus A at different temperatures. European Poultry Science 68(2): 50-56. https://doi.org/10.1016/S0003-9098(25)00022-0
Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation 26: 102336. https://doi.org/10.1016/j.eti.2022.102336
Zein R, Sharrouf W, Selting K. (2020). Physical properties of nanoparticles that result in improved cancer targeting. Journal of Oncology (1): 5194780. https://doi.org/10.1155/2020/5194780
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Musawir Ahmed, Arshia Mukhtar, Ali Asad, Muhammad Abdullah Ameen Qamar , Maham Fatima, Silla Ambrose, Afaq Ahmad, Muhammad Saim, Qaiser Abbas, Arslan Muhammad Ali Khan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-04-20
Published 2025-04-23