Zoonotic Escherichia coli infections: Pathogenic variants, mechanism of disease, transmission routes, and foodborne outbreaks
Zoonotic Escherichia coli and its pathogenic strains
DOI:
https://doi.org/10.62310/liab.v5i2.238Keywords:
Escherichia coli, Strains, Transmission, Zoonosis, oodborne outbreaks, One HealthAbstract
Escherichia coli is a gram-negative, rod-shaped bacterium with diverse pathogenic strains. Most strains of E. coli are motile and capable of causing infections in humans, small and large ruminants, and birds. The zoonotic E. coli phenotypes include Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteroaggregative E. coli (EAEC), and uropathogenic E. coli (UPEC), all of which pose a significant threat to public health. These pathogenic variants possess unique virulence factors, including Shiga toxins, adhesins, and enterotoxins, which enable E. coli to colonize host cells and disrupt their functions. The transmission of these pathogenic agents often occurs through direct contact with the infected animal, consumption of unhygienic dairy products, and environmental exposure to fecal material. Foodborne outbreaks due to zoonotic E. coli, specifically STEC O157:H7, are most often associated with undercooked meat, unpasteurized dairy, and contaminated water. This review highlights the major zoonotic pathotypes of E. coli, delineates their disease mechanisms and transmission routes from animals to humans, along with a summary of prominent foodborne outbreaks in humans and animals. It further emphasizes the importance of adopting an integrated One Health approach for the prevention and effective control of zoonotic E. coli infections, thereby reducing their incidence and public health burden.
Metrics
References
Ahmed B, Nawaz MA. (2024). Evaluation of anti-bacterial efficacy of nanoparticles against major mastitis-associated pathogens. Continental Veterinary Journal 4(2): 222-230. http://dx.doi.org/10.71081/cvj/2024.030
Al-Mustapha AI, Raufu IA, Ogundijo OA, Odetokun IA, Tiwari A, Brouwer MSM, Heikinheimo A. (2023). Antibiotic resistance genes, mobile elements, virulence genes, and phages in cultivated ESBL-producing Escherichia coli of poultry origin in Kwara State, North Central Nigeria. International Journal of Food Microbiology 389: 110086. https://doi.org/10.1016/j.ijfoodmicro.2023.110086
Al-Quraishi MQA, Jabar AD. (2022). Distribution of some virulence factors in septicemic and diarrhoeagenic Escherichia coli pathotypes in Iraq. Biochemical and Cellular Archives 22(1): 1435-1440. https://connectjournals.com/03896.2022.22.1435
Baby S, Karnaker VK, Geetha RK. (2016). Adhesins of uropathogenic Escherichia coli (UPEC). International Journal of Medical Microbiology and Tropical Diseases 2(1): 10-18.
Badouei MA, Taban H, Nemati A, Dos Santos LF. (2023). Molecular serotyping of Shiga toxin-producing Escherichia coli (STEC) of animal origin in Iran reveals the presence of important non-O157 seropathotypes. Veterinary Research Forum 14(5): 267-274. https://doi.org/10.30466/vrf.2022.550618.3416
Barber AE, Norton JP, Wiles TJ, Mulvey MA. (2016). Strengths and limitations of model systems for the study of urinary tract infections and related pathologies. Microbiology and Molecular Biology Reviews 80(2): 351-367. https://doi.org/10.1128/mmbr.00067-15
Bentancor A, Blanco Crivelli X, Piccini C, Trueba G. (2023). New Concepts on Domestic and Wild Reservoirs and Transmission of E. coli and Its Environment. In: Torres, A.G. (eds) Trending Topics in Escherichia coli Research. Springer, Cham. https://doi.org/10.1007/978-3-031-29882-0_3
Bloch S, Felczykowska A, Nejman-Faleńczyk B. (2012). Escherichia coli O104:H4 outbreak—have we learnt a lesson from it? Acta Biochimica Polonica 59(4): 483-488.
Cabrera-Sosa L, Ochoa TJ. (2020). Escherichia coli diarrhea. In: Hunter's tropical medicine and emerging infectious diseases. Elsevier, pp. 481-485. https://doi.org/10.1016/B978-0-323-55512-8.00046-6
Chala B, Hamde F. (2021). Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Frontiers in Public Health 9: 715759. https://doi.org/10.3389/fpubh.2021.715759
Chaoprasid P, Dersch P. (2021). The cytotoxic necrotizing factors (CNFs)—a family of Rho GTPase-activating bacterial exotoxins. Toxins 13(12): 1-24. https://doi.org/10.3390/toxins13120901
Christensen H, Bachmeier J, Bisgaard M. (2021). New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathology 50(5): 370-381. https://doi.org/10.1080/03079457.2020.1845300
Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, WH. (2008). Subversion of toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nature Medicine 14: 399–406. https://doi.org/10.1038/nm1734
da Silva DC, de Oliveira JP, Santos EAR, Tadielo LE, Possebon FS, Pereira JG. (2024). Microbiological assessment of a hospital kitchen before and after Good Manufacturing Practices’ intervention. Food Science and Technology 44: e00379. https://doi.org/10.5327/fst.00379%20
da Silva Santos AC, Gomes Romeiro F, Yukie Sassaki L, Rodrigues J. (2015). Escherichia coli from Crohn’s disease patient displays virulence features of enteroinvasive (EIEC), enterohemorrhagic (EHEC), and enteroaggregative (EAEC) pathotypes. Gut Pathogens 7(1): 2. https://doi.org/10.1186/s13099-015-0050-8
Davidova-Gerzova L, Lausova J, Sukkar I, Nesporova K, Nechutna L, Vlkova K, Kaspar J. (2023). Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Frontiers in Cellular and Infection Microbiology 13: 1184081. https://doi.org/10.3389/fcimb.2023.1184081
de Castro AFP, Bentancor A, Mercado EC, Cataldi A, Parma AE. (2012). Escherichia coli animal reservoirs, transmission route and animal disease. In: Pathogenic Escherichia coli in Latin America. Bentham Science Publishers, pp. 223–248. https://doi.org/10.2174/97816080519221100101
Denpetkul T, Srathongneam T, Sittipunsakda O, Tancharoen S, Krabkran P, Mongkolsuk S, Sirikanchana K. (2025). Protective masks reduced gastrointestinal risks of antibiotic-resistant E. coli for hospital wastewater treatment plant workers: a quantitative microbial risk assessment. Environmental Pollution 374: 126180. https://doi.org/10.1016/j.envpol.2025.126180
Edison LK, Kariyawasam S. (2025). From the gut to the brain: transcriptomic insights into neonatal meningitis Escherichia coli across diverse host niches. Pathogens 14(5): 485. https://doi.org/10.3390/pathogens14050485
Edison LK, Kudva IT, Kariyawasam S. (2024). Host–pathogen interactions during Shiga toxin-producing Escherichia coli adherence and colonization in the bovine gut: a comprehensive review. Microorganisms 12(10): 2009. https://doi.org/10.3390/microorganisms12102009
Esposito MM, Turku S, Lehrfield L, Shoman A. (2023). The impact of human activities on zoonotic infection transmissions. Animals 13(10): 1646. https://doi.org/10.3390/ani13101646
Eto DS, Jones TA, Sundsbak JL, Mulvey MA. (2007). Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathogens 3(7): e100. https://doi.org/10.1371/journal.ppat.0030100
Ezzat M, Hassanin AAI, Mahmoud AE, Ismail SM, El-Tarabili RM. (2023). Risk factors, antibiotic profile, and molecular detection of virulence and antibiotic resistance genes of enteric bacteria in diarrheic calves in Egypt. International Journal of Veterinary Science 12(2): 161-168. https://doi.org/10.47278/journal.ijvs/2022.186
Farag AM, Karmi M, Mubarak AG, Younis W, Youseef AG. (2023). Isolation and characterization of non-O157 Shiga toxin-producing Escherichia coli in Aswan Governorate with a zoonotic approach. Journal of Advanced Veterinary Research 13(6): 886-894. https://www.advetresearch.com/index.php/AVR/article/view/1312
Freedman SB, Van De Kar NCAJ, Tarr PI. (2023). Shiga toxin–producing Escherichia coli and the hemolytic–uremic syndrome. New England Journal of Medicine 389(15): 1402-1414. https://doi.org/10.1056/NEJMra2108739
Gambushe SM, Zishiri OT, El Zowalaty ME. (2022). Review of Escherichia coli O157:H7 prevalence, pathogenicity, heavy metal and antimicrobial resistance, African perspective. Infection and Drug Resistance 15: 4645-4673. https://doi.org/10.2147/IDR.S365269
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. (2024). Bacterial capsules: occurrence, mechanism, and function. NPJ Biofilms and Microbiomes 10(1): 21. https://doi.org/10.1038/s41522-024-00497-6
Garcia A, Fox JG. (2021). A one health perspective for defining and deciphering Escherichia coli pathogenic potential in multiple hosts. Comparative Medicine 71(1): 3-45. https://doi.org/10.30802/AALAS-CM-20-000054
García V, Lestón L, Parga A, García-Meniño I, Fernández J, Otero A, Mora A. (2023). Genomics, biofilm formation and infection of bladder epithelial cells in potentially uropathogenic Escherichia coli (UPEC) from animal sources and human urinary tract infections (UTIs) further support food-borne transmission. One Health 16: 100558. https://doi.org/10.1016/j.onehlt.2023.100558
Germon P, Foucras G, Smith DGE, Rainard P. (2025). Invited review: mastitis Escherichia coli strains: mastitis-associated or mammo-pathogenic? Journal of Dairy Science 108(5): 4485-4507. https://doi.org/10.3168/jds.2024-26109
Ghosh D, Halder P, Samanta P, Chowdhury G, Shaw S, Bose P, Ramamurthy T. (2025). Lactose fermenting enteroinvasive Escherichia coli from diarrhoeal cases confers enhanced virulence. Scientific Reports 15(1): 24040. https://doi.org/10.1038/s41598-025-07232-x
Glassman H, Ferrato C, Chui L. (2022). Epidemiology of non-O157 Shiga toxin-producing Escherichia coli in the province of Alberta, Canada, from 2018 to 2021. Microorganisms 10(4): 814. https://doi.org/10.3390/microorganisms10040814
Gomes TAT, Santos ACM, Hernandes RT, Arias-Guerrero MY, Farfán-García AE, Gómez-Duarte OG. (2023). Emergence of hybrid Escherichia coli strains. In: Trending topics in Escherichia coli research: The Latin American perspective. Springer, pp. 295–315. https://doi.org/10.1007/978-3-031-29882-0_13
Govers SK, Campos M, Tyagi B, Laloux G, Jacobs-Wagner C. (2024). Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell systems 15(1): 19-36. https://doi.org/10.1016/j.cels.2023.12.001
Govindarajan DK, Viswalingam N, Meganathan Y, Kandaswamy K. (2020). Adherence patterns of Escherichia coli in the intestine and its role in pathogenesis. Medicine in Microecology 5: 100025. https://doi.org/10.1016/j.medmic.2020.100025
Halabitska I, Petakh P, Kamyshna I, Oksenych V, Kainov DE, Kamyshnyi O. (2024). The interplay of gut microbiota, obesity, and depression: insights and interventions. Cellular and Molecular Life Sciences 81(1): 443. https://doi.org/10.1007/s00018-024-05476-w
Hameed H, Sarwar MT, Zafar R, Raza Q, Ain Qu, Younas S, Arshad S. (2024). E. coli and the normal microbiota; their interaction and role in health and disease. Frontiers in Microbiology and Biotechnology 2(1): 1–16. https://doi.org/10.54219/fmb.02.2024.161
Haque M, Bosilevac JM, Chaves BD. (2022). A review of Shiga-toxin producing Escherichia coli (STEC) contamination in the raw pork production chain. International Journal of Food Microbiology 377: 109832. https://doi.org/10.1016/j.ijfoodmicro.2022.109832
Hassan MA, Batiha GE, Saad SA, Mahrous E. (2023). Study on enterotoxigenic Escherichia coli producing extended spectrum beta lactamase (ESBL) from chicken meat and its products. International Journal of Veterinary Science 12(5): 652-658. https://doi.org/10.47278/journal.ijvs/2022.217
Hassani YAE, Ghazi IE, Ahouangninou C, Laziri F. (2023). Microbial contamination of vegetables produced at smallholdings in the urban and peri-urban area of Meknes City, Morocco. International Journal of Agriculture and Biosciences 12(2): 92-97. https://doi.org/10.47278/journal.ijab/2023.049
Holmes CL, Anderson MT, Mobley HL, Bachman MA. (2021). Pathogenesis of gram-negative bacteremia. Clinical Microbiology Reviews 34(2): 0023420. https://doi.org/10.1128/cmr.00234-20
Holzer K, Marongiu L, Detert K, Venturelli S, Schmidt H, Hoelzle LE. (2025). Phage applications for biocontrol of enterohemorrhagic E. coli O157:H7 and other Shiga toxin-producing Escherichia coli. International Journal of Food Microbiology 439: 111267. https://doi.org/10.1016/j.ijfoodmicro.2025.111267
Hosseininasab SA, Saffari F, Tadjrobehkar O, Zandi H, Ahmadi B, Khoshnood A, Mehboodi M. (2024). Diffusely adherent and cyclomodulin-positive Escherichia coli are associated with colon diseases. Jundishapur Journal of Microbiology 17(8): e147563. https://doi.org/10.5812/jjm-147563
Hu J, Afayibo DJA, Zhang B, Zhu H, Yao L, Guo W, Peng H. (2022). Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Frontiers in Microbiology 13: 614963. https://doi.org/10.3389/fmicb.2022.1049391
Hwang Sb, Chelliah R, Kang JE, Rubab M, Banan-MwineDaliri E, Elahi F, Oh DH. (2021). Role of recent therapeutic applications and the infection strategies of Shiga toxin-producing Escherichia coli. Frontiers in Cellular and Infection Microbiology 11: 1049391. https://doi.org/10.3389/fcimb.2021.614963
Islam MS, Rahman AMMT, Hassan J, Rahman MT. (2023). Extended-spectrum beta-lactamase in Escherichia coli isolated from humans, animals, and environments in Bangladesh: a One Health perspective systematic review and meta-analysis. One Health 16: 100526. https://doi.org/10.1016/j.onehlt.2023.100526
Isler M, Wissmann R, Morach M, Zurfluh K, Stephan R, Nüesch-Inderbinen M. (2021). Animal petting zoos as sources of Shiga toxin‐producing Escherichia coli, Salmonella and extended‐spectrum β‐lactamase (ESBL)‐producing Enterobacteriaceae. Zoonoses and Public Health 68(2): 79-87. https://doi.org/10.1111/zph.12798
Izquierdo-Vega JA, Castillo-Juarez RJ, Sánchez-Gutiérrez M, Ares MA, De La Cruz MA. (2023). A mini-review of enteroaggregative Escherichia coli with a specific target on the virulence factors controlled by the AggR master regulator. Polish Journal of Microbiology 72(4): 347–354. https://doi.org/10.33073/pjm-2023-037
Joseph J, Zhang L, Adhikari P, Evans JD, Ramachandran R. (2023). Avian pathogenic Escherichia coli (APEC) in broiler breeders: an overview. Pathogens 12(11): 1280. https://doi.org/10.3390/pathogens12111280
Kannan G, Mahapatra AK, Degala HL. (2021). Preharvest management and postharvest intervention strategies to reduce Escherichia coli contamination in goat meat: a review. Animals 11(10): 2943. https://doi.org/10.3390/ani11102943
Kantele A, Lääveri T. (2022). Extended-spectrum beta-lactamase-producing strains among diarrhoeagenic Escherichia coli—prospective traveller study with literature review. Journal of Travel Medicine 29(1): taab042. https://doi.org/10.1093/jtm/taab042
Kaper JB, Nataro JP, Mobley HL. (2004). Pathogenic Escherichia coli. Nature Reviews Microbiology 2: 123–140. https://doi.org/10.1038/nrmicro818
Karbalaei M, Esmailpour M, Oksenych V, Eslami M. (2025). Comprehensive analysis of blaCTX-M1 gene expression alongside iutA, csgA, and kpsMII virulence genes in septicemic Escherichia coli using real-time PCR. Microorganisms 13(1): 95. https://doi.org/10.3390/microorganisms13010095
Kathayat D, Lokesh D, Ranjit S, Rajashekara G. (2021). Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens 10(4): 467. https://doi.org/10.3390/pathogens10040467
Khairullah AR, Afnani DA, Riwu KHP, Widodo A, Yanestria SM, Moses IB, Fauziah I. (2024). Avian pathogenic Escherichia coli: epidemiology, virulence and pathogenesis, diagnosis, pathophysiology, transmission, vaccination, and control. Veterinary World 17(12): 2747-2762. https://doi.org/10.14202/vetworld.2024.2747-2762
Khasheii B, Anvari S, Jamalli A. (2016). Frequency evaluation of genes encoding siderophores and the effects of different concentrations of Fe ions on growth rate of uropathogenic Escherichia coli. Iranian Journal of Microbiology 8(6): 359-365.
Kinanti AS, Prihanto AA, Jatmiko YD, Kobun R, Xia W, Felicia L. (2024). Harnessing bacteriophages: a promising approach to combat foodborne pathogen biofilms. International Journal of Agriculture and Biosciences 13(4): 656–668. https://doi.org/10.47278/journal.ijab/2024.172
Köckerling E, Karrasch L, Schweitzer A, Razum O, Krause G. (2017). Public health research resulting from one of the world’s largest outbreaks caused by entero-hemorrhagic Escherichia coli in Germany 2011: A review. Frontiers in Public Health 5: 332. https://doi.org/10.3389/FPUBH.2017.00332
Kromann S, Olsen RH, Bojesen AM, Jensen HE, Thøfner I. (2021). Development of an aerogenous Escherichia coli infection model in adult broiler breeders. Scientific Reports 11(1): 19556. https://doi.org/10.1038/s41598-021-98270-8
Laird TJ, Abraham S, Jordan D, Pluske JR, Hampson DJ, Trott DJ, O’Dea M. (2021). Porcine enterotoxigenic Escherichia coli: antimicrobial resistance and development of microbial-based alternative control strategies. Veterinary Microbiology 258: 109117. https://doi.org/10.1016/j.vetmic.2021.109117
Lee JB, Kim SK, Yoon JW. (2022). Pathophysiology of enteropathogenic Escherichia coli during a host infection. Journal of Veterinary Science 23(2): e28. https://doi.org/10.4142/jvs.21160
Lee W, Ha J, Choi J, Jung Y, Kim E, An ES, Kim SH. (2024). Genetic and virulence characteristics of hybrid Shiga toxin-producing and atypical enteropathogenic Escherichia coli strains isolated in South Korea. Frontiers in Microbiology 15: 1398262. https://doi.org/10.3389/fmicb.2024.1398262
Lenchenko E, Sachivkina N, Karamyan A, Volobueva O, Neborak E, Avdonina M, Molchanova M. (2024). Characteristics of biofilms formed by pathogenic Enterobacterales isolated from infected gastrointestinal tracts of rabbits. International Journal of Veterinary Science 13(6): 870–877. https://doi.org/10.47278/journal.ijvs/2024.183
Liguori G, Costagliola A, Lombardi R, Paciello O, Giordano A. (2023). Human-animal interaction in animal-assisted interventions (AAI)s: zoonosis risks, benefits, and future directions—a one health approach. Animals 13(10): 592. https://doi.org/10.3390/ani13101592
Liu CM, Aziz M, Park DE, Wu Z, Stegger M, Li M, Koch BJ, (2023). Using source-associated mobile genetic elements to identify zoonotic extraintestinal E. coli infections. One Health 16: 518. https://doi.org/10.1016/j.onehlt.2023.100518
Liu Y, Zhu M, Fu X, Cai J, Chen S, Lin Y, Lin Z. (2021). Escherichia coli causing neonatal meningitis during 2001–2020: a study in eastern China. International Journal of General Medicine 2021: 3007–3016. https://doi.org/10.2147/IJGM.S317299
Luna-Gierke RE, Griffin PM, Gould LH, Herman K, Bopp CA, Strockbine N, Mody RK. (2014). Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiology and Infection 142(11): 2270–2280. https://doi.org/10.1017/S0950268813003233
Ma J, Li N, Liu Y, Wang C, Liu X, Chen S, Sun H. (2017). Antimicrobial resistance patterns, clinical features, and risk factors for septic shock and death of nosocomial E. coli bacteremia in adult patients with hematological disease: a monocenter retrospective study in China. Medicine 96(21): e6959. https://doi.org/10.1097/MD.0000000000006959
Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, Kirk MD. (2014). Global incidence of human Shiga toxin–producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathogens and Disease 11(6): 447–455. https://doi.org/10.1089/fpd.2013.1704
Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. (2019). Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clinical Microbiology Reviews 32(3): e00135-18. https://doi.org/10.1128/cmr.00135-18
Mansour S, Asrar T, Elhenawy W. (2023). The multifaceted virulence of adherent-invasive Escherichia coli. Gut Microbes 15(1): 2172669. https://doi.org/10.1080/19490976.2023.2172669
Mare AD, Ciurea CN, Man A, Tudor B, Moldovan V, Decean L, Toma F. (2021). Enteropathogenic Escherichia coli—a summary of the literature. Gastroenterology Insights 12(1): 28–40. https://doi.org/10.3390/gastroent12010004
Martin P, Tronnet S, Garcie C, Oswald E. (2017). Interplay between siderophores and colibactin genotoxin in Escherichia coli. IUBMB Life 69(6): 435–441. https://doi.org/10.1002/iub.1612
Meçaj R, Muça G, Koleci X, Sulçe M, Turmalaj L, Zalla P, Tafaj M. (2023). Bovine environmental mastitis and their control: an overview. International Journal of Agriculture and Biosciences 12(4): 216–221. https://doi.org/10.47278/journal.ijab/2023.067
Meena PR, Yadav P, Hemlata H, Tejavath KK, Singh AP. (2021). Poultry‐origin extraintestinal Escherichia coli strains carrying the traits associated with urinary tract infection, sepsis, meningitis and avian colibacillosis in India. Journal of Applied Microbiology 130(6): 2087–2101. https://doi.org/10.1111/jam.14905
Mehmood S, Ashraf M. (2023). Antimicrobial resistance and virulence determinants of E. coli in bovine clinical mastitis in dairy farms. Continental Veterinary Journal 3(1): 54–59.
Mehrdel B, Yehya AHS, Dheyab MA, Jameel MS, Aziz AA, Nikbakht A, Kareem AA. (2023). The antibacterial and toxicological studies of mycosynthesis silver nanoparticles by isolated phenols from Agaricus bisporus. Physica Scripta 98(12): 125007. https://doi.org/10.1088/1402-4896/ad080f
Melinte V, Radu AM, Văcăroiu CM, Cismaru MI, Oprescu Macovei AM, Mihăilă DE, Gheorghiță V. (2024). A successful approach to diagnosing Shiga-like toxin-producing Escherichia coli-induced colitis. Diagnostics 14(8): 801. https://doi.org/10.3390/diagnostics14080801
Moxley RA. (2022). Enterobacteriaceae: Escherichia. In: McVey DS, Kennedy M, Chengappa MM, Wilkes R, editors, Veterinary Microbiology. Wiley. Pp. 56–74. https://doi.org/10.1002/9781119650836.ch6
Mwafy A, Youssef DY, Mohamed MM. (2023). Antibacterial activity of zinc oxide nanoparticles against some multidrug-resistant strains of Escherichia coli and Staphylococcus aureus. International Journal of Veterinary Science 12(3): 284-289. https://doi.org/10.47278/journal.ijvs/2022.181
Nada HG, El-Tahan AS, El-Didamony G, Askora A. (2023). Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: one health menace. BMC Microbiology 23(1): 127. https://doi.org/10.1186/s12866-023-02873-2
Nadi WG, Ahmed LI, Awad AAN, Taher EM. (2024). Occurrence and antibiogram of Escherichia coli in livestock. International Journal of Veterinary Science 13(2): 218-225. https://doi.org/10.47278/journal.ijvs/2023.079
Nowaczek A, Dec M, Stępień-Pyśniak D, Urban-Chmiel R, Marek A, Różański P. (2021). Antibiotic resistance and virulence profiles of Escherichia coli strains isolated from wild birds in Poland. Pathogens 10(8): 1059. https://doi.org/10.3390/pathogens10081059
Nupur MN, Afroz F, Hossain MK, Harun-ur-Rashid SM, Rahman MG, Kamruzzaman M, Ferdous KA, Haque MA. (2023). Prevalence of potential zoonotic bacterial pathogens isolated from household pet birds and their antimicrobial profile in northern Bangladesh. Agrobiological Records 11: 28-38. https://doi.org/10.47278/journal.abr/2023.005
Oh JY, Park HM. (2025). Molecular characterization of uropathogenic Escherichia coli (UPEC) strains isolated from companion dogs and cats in Korea. Journal of Veterinary Science 26(1): e14. https://doi.org/10.4142/jvs.24244
Osafo R, Balali GI, Amissah-Reynolds PK, Gyapong F, Addy R, Nyarko AA, Wiafe P. (2022). Microbial and parasitic contamination of vegetables in developing countries and their food safety guidelines. Journal of Food Quality 2022(1): 4141914. https://doi.org/10.1155/2022/4141914
Ouarroud B, El Maadoudi M, Barakat A, Hasni S. (2024). Shiga toxin-producing Escherichia coli (STEC); virulence factors, pathologies caused and foods at risk: review. In: International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD’2023). AI2SD 2023. Lecture Notes in Networks and Systems, Springer, Cham. https://doi.org/10.1007/978-3-031-52385-4_31
Pakbin B, Brück WM, Rossen JWA. (2021). Virulence factors of enteric pathogenic Escherichia coli: A review. International Journal of Molecular Sciences 22(18): 9922. https://doi.org/10.3390/ijms22189922
Paruch L, Paruch AM. (2022). An overview of microbial source tracking using host-specific genetic markers to identify origins of fecal contamination in different water environments. Water 14(11): 1809. https://doi.org/10.3390/w14111809
Peek SF, McGuirk SM, Sweeney RW, Cummings KJ. (2018). Infectious diseases of the gastrointestinal tract. In: Peek SF, Divers TJ, editors, Rebhun's Diseases of Dairy Cattle, Elsevier. Pp:249-356. https://doi.org/10.1016/B978-0-323-39055-2.00006-1
Puvača N, de Llanos Frutos R. (2021). Antimicrobial resistance in Escherichia coli strains isolated from humans and pet animals. Antibiotics 10(1): 69. https://doi.org/10.3390/antibiotics10010069
Rahayu U, Wibisono FJ, Tyasningsih W, Effendi MH, Budiastuti B, Budiarto B, Tang JYH. (2025). Risk of antimicrobial and multidrug resistance on avian pathogenic Escherichia coli in public health. Journal of Advanced Veterinary Research 15(3): 414–420. https://advetresearch.com/index.php/AVR/article/view/2236
Ramos S, Silva V, Dapkevicius MdLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals 10(12): 2239. https://doi.org/10.3390/ani10122239
Ray R, Singh P. (2022). Prevalence and implications of Shiga toxin-producing E. coli in farm and wild ruminants. Pathogens 11(11): 1332. https://doi.org/10.3390/pathogens11111332
Riaz A, Shahzad, MA, Ahsan A, Aslam R, Usman M, Rasheed B, Ali A. (2023). Antimicrobial resistance pattern of Escherichia coli isolated from poultry in Lahore, Pakistan. International Journal of Veterinary Science 12(6): 832–837. https://doi.org/10.47278/journal.ijvs/2023.046
Rodriguez J. (2024). One health ethics and the ethics of zoonoses: A silent call for global action. Veterinary Sciences 11(9): 1-35. https://doi.org/10.3390/vetsci11090394
Rozwadowski M, Gawel D. (2022). Molecular factors and mechanisms driving multidrug resistance in uropathogenic Escherichia coli—an update. Genes 13(8): 1397. https://doi.org/10.3390/genes13081397
Ryandini D, Ma'arif S, Hidayat A, Putri AR, Kusharyati DF, Pratiwi M, Fitriadi RO. (2024). Antibacterial, antiaging, and antiangiogenic activity of Streptomyces sp. SAE4034 extract from mangrove sediment. International Journal of Agriculture and Biosciences 13(4): 574-581. https://doi.org/10.62310/liab.v5i1.201
Salman M, Steneroden K. (2023). Important zoonotic diseases of cattle and their prevention measures. In: Singh A, editor, Zoonoses: Infections Affecting Humans and Animals. Springer, Cham. Pp. 91-111. https://doi.org/10.1007/978-3-031-27164-9_1
Saman QR, Fatima W, Ahmad MR, Malik MI, Ahsan H, Baig A, Shabir M, Ayub M, Siddique AB. (2025). Immune evasion strategies of E. coli. In: García-Rubio VG, Alvi MA, Saeed Z, Ahmad M, editors, Foundations of Holistic Healing: Complementary and Alternative Medicine. Unique Scientific Publishers, Faisalabad, Pakistan. Pp. 65-70. https://doi.org/10.47278/book.HH/2025.451
Sarba EJ, Wirtu W, Gebremedhin EZ, Borena BM, Marami LM. (2023). Occurrence and antimicrobial susceptibility patterns of Escherichia coli and Escherichia coli O157 isolated from cow milk and milk products, Ethiopia. Scientific Reports 13(1): 16018. https://doi.org/10.1038/s41598-023-43043-8
Shaheen MN. (2022). The concept of one health applied to the problem of zoonotic diseases. Reviews in Medical Virology 32(4): e2326. https://doi.org/10.1002/rmv.2326
Slattery M, Garvey M. (2025). Chlorine Disinfection Byproducts: A public health concern associated with dairy food contamination. Dairy 6(2): 18. https://doi.org/10.3390/dairy6020018
Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, Zecconi A. (2021). Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. Pathogens 10(11): 1355. https://doi.org/10.3390/pathogens10111355
Sroithongkham P, Nittayasut N, Yindee J, Nimsamer P, Payungporn S, Pinpimai K, Chanchaithong P. (2024). Multidrug-resistant Escherichia coli causing canine pyometra and urinary tract infections are genetically related but distinct from those causing prostatic abscesses. Scientific Reports 14(1): 11848. https://doi.org/10.1038/s41598-024-62028-9
Strzelecki P, Karczewska M, Szalewska-Pałasz A, Nowicki D. (2025). Phytochemicals controlling enterohemorrhagic Escherichia coli (EHEC) virulence—current knowledge of their mechanisms of action. International Journal of Molecular Sciences 26(1): 381. https://doi.org/10.3390/ijms26010381
Su Y, Ma G, Zheng Y, Qin J, Li X, Ge Q, Liu B. (2023). Neonatal meningitis-causing Escherichia coli induces microglia activation which acts as a double-edged sword in bacterial meningitis. International Journal of Molecular Sciences 24(12): 9915. https://doi.org/10.3390/ijms24129915
Sun H, Wang M, Liu Y, Wu P, Yao T, Yang W, Yang B. (2022). Regulation of flagellar motility and biosynthesis in enterohemorrhagic Escherichia coli O157: H7. Gut Microbes 14(1): 2110822. https://doi.org/10.1080/19490976.2022.2110822
Tack DM, Kisselburgh HM, Richardson LC, Geissler A, Griffin PM, Payne DC, Gleason BL. (2021). Shiga toxin-producing Escherichia coli outbreaks in the United States, 2010–2017. Microorganisms 9(7): 1529. https://doi.org/10.3390/microorganisms9071529
Thani TS. (2023). Characterization of Escherichia coli pathotypes and factors associated with well and water contamination in Mombasa County. MSc Thesis, Jomo Kenyatta University of Agriculture and Technology, Mombasa County, Kenya. http://localhost/xmlui/handle/123456789/6010
Thomas KD, McAllister TA. (2024). The science of Shiga toxin-producing (Verotoxin-producing) Escherichia coli (STEC): An ongoing one health journey toward improved health and food safety - Editorial summary. Microorganisms 12(2): 344. https://doi.org/10.3390/microorganisms12020344
Venegas-Vargas C, Henderson S, Khare A, Mosci RE, Lehnert JD, Singh P, Manning SD. (2016). Factors associated with Shiga toxin-producing Escherichia coli shedding by dairy and beef cattle. Applied and Environmental Microbiology 82(16): 5049-5056. https://doi.org/10.1128/AEM.00829-16
Von Mentzer A, Svennerholm AM. (2024). Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC). Trends in Microbiology 32(5): 448-464. https://doi.org/10.1016/j.tim.2023.11.001
Wada Y, Muhammad SL, Adeyemi NA, Bolakojo OY, Ibrahim MJ, Jimba JH, Saliu MA, Aliyu AA, Tijani HO. (2025). Occurrence of pathogenic Escherichia coli O157:H7 in vegetables, fruit and milk in selected areas of Sabon Gari LGA, Kaduna State, Nigeria: A short communication. Journal of Science Technology and Education 13(1): 233-240.
Watts A, Wigley P. (2024). Avian pathogenic Escherichia coli: an overview of infection biology, antimicrobial resistance and vaccination. Antibiotics 13(9): 809. https://doi.org/10.3390/antibiotics13090809
Whelan S, Lucey B, Finn K. (2023). Uropathogenic Escherichia coli (UPEC)-associated urinary tract infections: the molecular basis for challenges to effective treatment. Microorganisms 11(9): 2169. https://doi.org/10.3390/microorganisms11092169
Willis C, Jørgensen F, Cawthraw S, Aird H, Lai S, Kesby M, Raykova G. (2023). A survey of Salmonella, Escherichia coli, and antimicrobial resistance in frozen, part-cooked, breaded, or battered chicken products on retail sale in the UK. Journal of Applied Microbiology 134(5): lxad093. https://doi.org/10.1093/jambio/lxad093
Yu D, Banting G, Neumann NF. (2021). A review of the taxonomy, genetics, and biology of the genus Escherichia and the type species Escherichia coli. Canadian Journal of Microbiology 67(8): 553-571. https://doi.org/10.1139/cjm-2020-0508
Zaada DSY, Ben-Yosef M, Yuval B, Jurkevitch E. (2019). The host fruit amplifies mutualistic interaction between Ceratitis capitata larvae and associated bacteria. BMC Biotechnology 19(2): 92. https://doi.org/10.1186/s12896-019-0581-z
Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. (2022). Urinary tract infections caused by uropathogenic Escherichia coli strains—new strategies for an old pathogen. Microorganisms 10(7): 1425. https://doi.org/10.3390/microorganisms10071425
Zhang Y, Tan P, Zhao Y, Ma X. (2022). Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 14(1): 2055943. https://doi.org/10.1080/19490976.2022.2055943
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abdul Rehman Rafee, Monyer Abdulamier Abd Alfatlawi, Ali Asad, Sarah Noor, Shaista Shafiq, Iftikhar Ud Din, Nida Zainab, Talha Ahmad, Sumaira Afzal, Muqadas Arshad, Silla Ambrose, Sahar Mustafa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2025-09-22
Published 2025-10-04