Targeted and efficient therapeutic effect of nanoparticles against malignant tumor

Nanoparticles against tumor

Authors

  • Silla Ambrose Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan https://orcid.org/0009-0004-3189-3689
  • Arslan Muhammad Ali Khan Department of Parasitology, University of Agriculture Faisalabad, Pakistan https://orcid.org/0009-0001-8292-5810
  • Iqra Liaqat National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Pakistan
  • Maham Rub Nawaz National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Pakistan https://orcid.org/0009-0002-4657-5216
  • Muhammad Talha Tariq National Institute of Food Science and Technology (NIFSAT), University of Agriculture Faisalabad, Pakistan https://orcid.org/0009-0007-8384-598X
  • Suleman Masih Faculty of Allied Health Professionals, Government College University Faisalabad, 38000, Punjab, Pakistan.
  • Syeda Iqra Basharat Department of Chemistry, Faculty of Sciences, University of Agriculture Faisalabad, Pakistan https://orcid.org/0009-0003-9499-1393
  • Muhammad Umer Younas Bajwa Department of Chemistry, Faculty of Sciences, University of Agriculture Faisalabad, Pakistan https://orcid.org/0009-0005-3751-4325
  • Anum Zufiqar Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad, Pakistan https://orcid.org/0009-0009-7659-0741
  • Laiba Naeem Department of Chemistry, Faculty of Sciences, University of Agriculture Faisalabad, Pakistan
  • Muhammad Talha Talib Department of Clinical Sciences, University of Veterinary and Animal Sciences Lahore, Jhang Campus, Punjab, Pakistan https://orcid.org/0009-0000-8535-987X

DOI:

https://doi.org/10.62310/liab.v5i1.175

Keywords:

Mutations, Nanoparticles, Alternatives, Treatment, Cancer

Abstract

Cancer or malignant tumors are major global health concerns and limited treatment regimens are hazardous threats to people. Mostly malignant tumors are caused by various genetic and environmental factors. Various chemical agents have been used over the years to treat and limit this disease but due to unsatisfactory and insufficient results, researchers have diverted their attention towards alternatives. Nanoparticles (NPs) have a major role in improving treatment facilities. Nanoparticles have peculiar characteristics due to their size, shape, charge, and surface area. Their unique properties allow improved drug delivery to the target site at the cellular level by active or passive targeting. Different NPs are being modified for cancer therapy like polymeric NPs, liposomes, extracellular vesicles, nano-emulsions, carbon NPs, quantum dots, magnetic NPs, and silica NPs. They hold a promising future for diagnosis, treatment, and lowering the risk of these lethal diseases including breast and brain cancer due to their various beneficial mechanisms of overcoming drug resistance mechanisms.

Metrics

Metrics Loading ...

References

Adeyemi SA, Kumar P, Choonara YE, Pillay V. (2019). Stealth properties of nanoparticles against cancer: surface modification of NPs for passive targeting to human cancer tissue in zebrafish embryos. In: Pathak Y, editor, Surface modification of nanoparticles for targeted drug delivery, Springer, Cham. Pp. 99-124. https://doi.org/10.1007/978-3-030-06115-9_5

Afify SM, Seno M. (2023). On the origin of cancer. In: Methods in cancer stem cell biology. Springer Singapore. Pp. 1-21. https://doi.org/10.1007/978-981-99-1331-2_1

Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. (2022). Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials 12(24): 4494. https://doi.org/10.3390/nano12244494

Aghebati‐Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, Yousefi M, Aghebati‐Maleki L. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of Cellular Physiology 235(3): 1962-1972. https://doi.org/10.1002/jcp.29126

Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. (2023). Nanotechnology in cancer diagnosis and treatment. Pharmaceutics 15(3): 1025. https://doi.org/10.3390/pharmaceutics15031025

Amraee N, Majd A, Torbati MB, Shaabanzadeh M. (2023). Folic acid-decorated and pegylated graphene quantum dots as efficient tamoxifen delivery system against breast cancer cells: in vitro studies. https://doi.org/10.21203/rs.3.rs-2507864/v1

Anjum S. (2022). Implications of nanotechnology in ameliorating cancer. Pakistan Journal of Health Sciences 3(2): 02. https://doi.org/10.54393/pjhs.v3i02.71

Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. (2019). An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology 71(8): 1185-1198. https://doi.org/10.1111/jphp.13098

Bellucci S. (2020). Nanocarbon for drug delivery. In: Rossi F, Rainer A, editors, Nanomaterials for theranostics and tissue engineering. Elsevier. Pp. 205-232. https://doi.org/10.1016/B978-0-12-817838-6.00008-5

Boutry J, Tissot S, Ujvari B, Capp JP, Giraudeau M, Nedelcu AM, Thomas F. (2022). The evolution and ecology of benign tumors. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1877(1): 188643. https://doi.org/10.1016/j.bbcan.2021.188643

Caraway CA, Gaitsch H, Wicks EE, Kalluri A, Kunadi N, Tyler BM. (2022). Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers 14(14): 2963. https://doi.org/10.3390/polym14142963

Chaudhry GS, Akim AM, Sung, Muhammad TST. (2022). Cancer and Apoptosis. Methods in Molecular Biology 2543: 191-210. https://doi.org/10.1007/978-1-0716-2553-8_16

Current JR. (2020). How can we stop cancer?. The review: A Journal of Undergraduate Student Research 21(1): 5. https://fisherpub.sjf.edu/ur/vol21/iss1/5 (Accessed on 28 Oct. 2024)

Davodabadi F, Mirinejad S, Fathi‐Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rajdar A, Diez-Pascual AAM. (2023). Aptamer‐functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: a comprehensive overview of recent trends. Biotechnology Progress 39(5): e3366. https://doi.org/10.1002/btpr.3366

de Sousa EMB, Meireles IBDCJ, Vieira LAF, do Apostolos RCR, Marinho JPN, Cipreste M.F. (2022). Nanoparticles for therapy and diagnostic imaging techniques in cancer. In: Almeida deSousa AM, Pienna Saores C, Chorilli M, editors, Cancer nanotechnology. Cham: Springer International Publishing. Pp. 273-308. https://doi.org/10.1007/978-3-031-17831-3_10

Dey A, Kesharwani P, Dubey SK. (2023). Actively targeted nanoparticles in photodynamic therapy. In: Kesharwani P, editor, Nanomaterials for photodynamic therapy. Woodhead Publishing. Pp. 261-279. https://doi.org/10.1016/B978-0-323-85595-2.00014-1

Dhanyamraju PK, Schell TD, Amin S, Robertson GP. (2022). Drug-tolerant persister cells in cancer therapy resistance. Cancer Research 82(14): 2503-2514. https://doi.org/10.1158/0008-5472.CAN-21-3844

Dhumal N, Yadav V, Borkar S. (2022). Nano-emulsion as novel drug delivery system: Development, characterization, and application. Asian Journal of Pharmaceutical Research and Development 10(6): 120-127. http://dx.doi.org/10.22270/ajprd.v10i6.1205

do Nascimento T, Todeschini AR, Santos-Oliveira R, de Souza DBM, Mariana S, de Souza V. T, Ricci-Júnior E. (2020). Trends in nanomedicines for cancer treatment. Current Pharmaceutical Design 26(29): 3579-3600. https://doi.org/10.2174/1381612826666200318145349

Dogan E, Kara HG, Kosova B, Cetintas VB. (2022). Targeting apoptosis to overcome chemotherapy resistance. In: Sergi CM, editor, Metastasis. Exon Publications, Brisbane, Australia. Pp. 163-180. https://doi.org/10.36255/exon-publications.metastasis.chemotherapy-resistance

Dujon AM, Brown JS, Destoumieux‐Garzon D, Vittecoq M, Hamede R, Tasiemski A, Boutry J, Tissot S, Alix-Panabieres C, Pujol P, Renaud F, Simard F, Roche B, Ujvari B, Thomas F. (2021). On the need for integrating cancer into the One Health perspective. Evolutionary Applications 14(11): 2571-2575. https://doi.org/10.1111/eva.13303

Ebbensgaard AE, Lobner-Olesen A, Frimodt-Moller J. (2020). The role of efflux pumps in the transition from low-level to clinical antibiotic resistance. Antibiotics 9(12): 855. https://doi.org/10.3390/antibiotics9120855

Emons G, Mustea A, Tempfer C. (2020). Tamoxifen and endometrial cancer: A janus-headed drug. Cancers 12(9): 2535. https://doi.org/10.3390/cancers12092535

Escudero AR. (2022). The potential application of polymeric nanoparticles in different cancer treatments. In: Proceedings of the MOL2NET'22, Conference on Molecular, Biomed., Comput. & Network Science and Engineering, 8th ed., MDPI: Basel, Switzerland. https://doi.org/10.3390/mol2net-08-13910

Franco C, Viana AR, Ourique AF, Vizzotto BS, Krause LMF. (2022). Protective effect of Indomethacin-loaded polymeric nanoparticles against oxidative stress-induced cytotoxicity in human breast adenocarcinoma cell model. Revista Brasileira de Cancerologia 68(4): e-012545. https://doi.org/10.32635/2176-9745.RBC.2022v68n4.2545

Fu Y, Ye F, Zhang X, He Y, Li X, Tang Y, Wang J, Gao D. (2022). Decrease in tumor interstitial pressure for enhanced drug intratumoral delivery and synergistic tumor therapy. ACS Nano 16(11): 18376-18389. https://doi.org/10.1021/acsnano.2c06356

Fulton MD, Najahi-Missaoui W. (2023). Liposomes in cancer therapy: how did we start and where are we now. International Journal of Molecular Sciences 24(7): 6615. https://doi.org/10.3390/ijms24076615

Gavas S, Quazi S, Karpiński TM. (2021). Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Research Letters 16(1): 173. https://doi.org/10.1186/s11671-021-03628-6

Gomes ER, Carvalho ATD, Barbosa TC, Ferreira LL, Calado HDR, Sabino AP, Oliveira MC. (2022). Fusion of tumor-derived exosomes with long-circulating and pH-sensitive liposomes loaded with doxorubicin for the treatment of breast cancer. AAPS PharmSciTech 23(7): 255. https://doi.org/10.1208/s12249-022-02349-y

Gomes ER, Souza FR, Cassali GD, Sabino ADP, Barros ALBD, Oliveira MC. (2022). Investigation of the antitumor activity and toxicity of tumor-derived exosomes fused with long-circulating and pH-sensitive liposomes containing doxorubicin. Pharmaceutics 14(11): 2256. https://doi.org/10.3390/pharmaceutics14112256

Goracinova K, Geskovski N, Dimchevska S, Li X, Gref R. (2018). Multifunctional core–shell polymeric and hybrid nanoparticles as anticancer nanomedicines. In: Grumezescu AM, editor, Design of nanostructures for theranostics applications. Elsevier. https://doi.org/10.1016/B978-0-12-813669-0.00004-X

Goswami AS, Rawat R, Pillai P, Saw RK, Joshi D, Mandal A. (2023). Formulation and characterization of nanoemulsions stabilized by nonionic surfactant and their application in enhanced oil recovery. Petroleum Science and Technology 42(21): 2990-3008. https://doi.org/10.1080/10916466.2023.2181357

Gregory CD, Rimmer MP. (2023). Extracellular vesicles arising from apoptosis: Forms, functions, and applications. The Journal of Pathology 260(5): 592-608. https://doi.org/10.1002/path.6138

Grigore AC, Busila C, Chesaru IB, Calin A, Pavel LL. (2017). Biological features of tumors results of experimental studies. Revista De Chimie 68(3): 594-598. https://doi.org/10.37358/RC.17.3.5508

Gu G, Chen C, Zhang S, Yin B, Wang J. (2021). Self-assembly dual-responsive NO donor nanoparticles for effective cancer therapy. ACS Applied Materials & Interfaces 13(43): 50682-50694. https://doi.org/10.1021/acsami.1c12646

Gupta D, Singh A, Khan AU. (2017). Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Research Letters 12: 454. https://doi.org/10.1186/s11671-017-2222-6

Gupta P, Mishra K, Mittal AK, Handa N, Paul MK. (2024). Current expansion of silver and gold nanomaterials towards cancer theranostics: Development of therapeutics. Current Nanoscience, 20(3): 356-372. https://doi.org/10.2174/1573413719666230503144904

Haj-Mirzaian A, Afshari K, Abdolghaffari AH. (2021). Aging and cancer prognosis. In: Rezaei N, editor, Cancer immunology. Springer, Cham. Pp. 433-448. https://doi.org/10.1007/978-3-030-50287-4_24

Hamdy NM, Eskander G, Basalious EB. (2022). Insights on the dynamic innovative tumor targeted-nanoparticles-based drug delivery systems activation techniques. International Journal of Nanomedicine 17: 6131. https://doi.org/10.2147/IJN.S386037

Hano M, Tomášová L, Seres M, Pavlíkova L, Breier A, Sulová Z. (2018). Interplay between P-glycoprotein expression and resistance to endoplasmic reticulum stressors. Molecules 23(2): 337. https://doi.org/10.3390/molecules23020337

Hashim PK, Dirisala A. (2022). Nanomaterials in chemotherapy. In: Kumar DS, Girija AR, Bionanotechnology in cancer. Jenny Stanford Publishing, New York, USA. Pp. 271-336. https://doi.org/10.1201/9780429422911-10

Hassanin IA, Shama AN, Elzoghby AO. (2022). Overcoming cancer drug resistance via nanomedicine-based combined drug delivery. In: Kesharwani P, editor, Combination drug delivery approach as an effective therapy for various diseases. Academic Press. Pp. 3-29. https://doi.org/10.1016/B978-0-323-85873-1.00011-3

Hegde MM, Sandbhor P, Gota V, Goda JS. (2023). Insight into lipid-based nanoplatform-mediated drug and gene delivery in neuro-oncology and their clinical prospects. Frontiers in Oncology 13: 1168454. https://doi.org/10.3389/fonc.2023.1168454

Hosseinikhah SM, Gheybi F, Moosavian SA, Shahbazi MA, Jaafari MR, Sillanpaa M, ... & Sahebkar, A. (2023). Role of exosomes in tumour growth, chemoresistance and immunity: State-of-the-art. Journal of Drug Targeting 31(1): 32-50. https://doi.org/10.1080/1061186X.2022.2114000

Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. (2022). Nanomedicines for overcoming cancer drug resistance. Pharmaceutics 14(8): 1606. https://doi.org/10.3390/pharmaceutics14081606

Huang P, Wang C, Deng H, Zhou Y, Chen X. (2023). Surface engineering of nanoparticles toward cancer theranostics. Accounts of Chemical Research 56(13): 1766-1779. https://doi.org/10.1021/acs.accounts.3c00122

Iovine R, Loscrì V, Pizzi S, Tarparelli R, Vegni AM. (2017). Electromagnetic nanonetworks for sensing and drug delivery. In: Suzuki J, Nakano T, Moore M, editors, Modeling, methodologies and tools for molecular and nano-scale communications: Modeling, and optimization in science and technologies. Springer, Chem. Pp. 473-501. https://doi.org/10.1007/978-3-319-50688-3_20

Itoo AM, Paul M, Ghosh B, Biswas S. (2023). Polymeric graphene oxide nanoparticles loaded with doxorubicin for combined photothermal and chemotherapy in triple negative breast cancer. Biomaterials Advances 153: 213550. https://doi.org/10.1016/j.bioadv.2023.213550

Ji Z, Li Y. (2022). The applications of organic and inorganic nanomaterials in cancer therapy. Proceedings of Society of Photo-Optical Instrumentation Engineers, Second international conference on medical imaging and additive manufacturing (ICMIAM), 12179. Pp. 107-115. https://doi.org/10.1117/12.2637316

Jurczyk M, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. (2022). Nanoparticles loaded with docetaxel and resveratrol as an advanced tool for cancer therapy. Biomedicines 10(5): 1187. https://doi.org/10.3390/biomedicines10051187

Kapoor D, Bhatt S, Kumar M, Maheshwari R, Tekade RK. (2019). Ligands for targeted drug delivery and applications. In: Tekade RK, editor, Basic fundamentals of drug delivery. Academic Press. Pp. 307-342. https://doi.org/10.1016/B978-0-12-817909-3.00008-X

Kashyap AK, Dubey SK. (2022). Molecular mechanisms in cancer development. In: Jain B, Pandey S, editor, Understanding cancer. Academic Press. Pp. 79-90. https://doi.org/10.1016/B978-0-323-99883-3.00016-0

Khafoor AA, Karim AS, Sajadi SM. (2023). Recent progress in synthesis of nano based liposomal drug delivery systems: A glance to their medicinal applications. Results in Surfaces and Interfaces 11: 100124. https://doi.org/10.1016/j.rsurfi.2023.100124

Kim J, Cho H, Lim DK, Joo MK, Kim K. (2023). Perspectives for Improving the tumor targeting of nanomedicine via the EPR Effect in Clinical Tumors. International Journal of Molecular Sciences 24(12): 10082. https://doi.org/10.3390/ijms241210082

Ku EB, Oh KT, Youn YS, Lee ES. (2016). Mitochondria-selective photodynamic tumor therapy using globular PEG nanoparticles. Macromolecular Research 24: 634-639. https://doi.org/10.1007/s13233-016-4090-9

Kucuk N, Primozic M, Knez Z, Leitgeb M. (2023). Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. International Journal of Molecular Sciences 24(4): 3188. https://doi.org/10.3390/ijms24043188

Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. (2020). Core–shell nanostructures: perspectives towards drug delivery applications. Journal of Materials Chemistry B 8(39): 8992-9027. https://doi.org/10.1039/D0TB01559H

Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya, Kumar D. (2023). Metal‐based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm 4(2): e253. https://doi.org/10.1002/mco2.253

Kumar V, Anis M. (2023). Nanoencapsulation and targeted delivery of different enzymes. In: Kour J, Haq RU, Wani, Jyoyi B, editor, Handbook of nanoencapsulation. CRC Press, Boca Raton. Pp. 233-253. https://doi.org/10.1201/9781003259183-12

Lange S. (2023). Extracellular vesicles in phylogeny. International Journal of Molecular Sciences 24(13): 10466. https://doi.org/10.3390/ijms241310466

Lao J, Madani J, Puértolas T, Álvarez M, Hernández A, Pazo-Cid R, Artal A, Torres AA. (2013). Liposomal doxorubicin in the treatment of breast cancer patients: a review. Journal of Drug Delivery 2013: 456409. https://doi.org/10.1155/2013/456409

Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S. Toelen J, Zhao Z, Manshian BB. (2023). Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chemical Society Reviews. 52: 4672-4724. https://doi.org/10.1039/D1CS00574J

Lentz MR. (2001). Methods and compositions for treatment of cancers. U.S. Patent No. US6231536B1. Washington, DC: U.S. Patent and Trademark Office.

Lewis JR. (2023). Antibody-drug conjugates: Understanding associated drug design and pharmacology. American Medical Writers Association Journal 38(2). https://doi.org/10.55752/amwa.2023.224

Li Y. (2023). Preparation of pH-sensitive polymeric nanoparticles for the targeted delivery of doxorubicin with high drug capacity. Highlights in Science, Engineering and Technology 45: 384-390. https://doi.org/10.54097/hset.v45i.7583

Linher-Melville K, Singh G. (2016). The disrupted steady-state: Tipping the balance in favour of cancer. In: Singh G, editor, Oncodynamics: Effects of cancer cells on the body. Springer Cham. Pp. 1-37. https://doi.org/10.1007/978-3-319-28558-0_1

Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. (2021). Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nature Reviews Clinical Oncology 18(9): 558-576. https://doi.org/10.1038/s41571-021-00507-y

Mishra S. (2023). Hyperbranched nanostructure drug delivery carrier: Dendrimer. Nanoscience & Nanotechnology-Asia 13(1): 20-25. https://doi.org/10.2174/2210681213666230214103113

Mohanty A, Uthaman S, Park IK. (2020). Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules 25(19): 4377. https://doi.org/10.3390/molecules25194377

Mumtaz S, Ali S, Mumtaz S, Pervaiz A, Tahir HM, Farooq MA, Mughal TA. (2023). Advanced treatment strategies in breast cancer: A comprehensive mechanistic review. Science Progress 106(2): 1-32. https://doi.org/10.1177/00368504231175331

Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Kouhbanani MAJ, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. (2021). Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in Bioengineering and Biotechnology 9: 705886. https://doi.org/10.3389%2Ffbioe.2021.705886

Nicoletta FP, Iemma F. (2023). Nanomaterials for drug delivery and cancer therapy. Nanomaterials 13(1): 207. https://doi.org/10.3390/nano13010207

Norouzi M, Amerian M, Amerian M, Atyabi F. (2020). Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today 25(1): 107-125. https://doi.org/10.1016/j.drudis.2019.09.017

Owida HA, Turab NM, Al-Nabulsi J. (2023). Carbon nanomaterials advancements for biomedical applications. Bulletin of Electrical Engineering and Informatics 12(2): 891-901. https://doi.org/10.11591/eei.v12i2.4310

Panja A, Patra P. (2023). A review on quantum dots (QDs) and their biomedical applications. 4open 6: 1. https://doi.org/10.1051/fopen2022020

Peng P, Chen Z, Wang M, Wen B, Deng X. (2023). Polysaccharide‐modified liposomes and their application in cancer research. Chemical Biology & Drug Design 101(4): 998-1011. https://doi.org/10.1111/cbdd.14201

Petreanu I, Niculescu VC, Enache S, Iacob C, Teodorescu M. (2023). Structural characterization of silica and amino-silica nanoparticles by fourier transform infrared (FTIR) and Raman spectroscopy. Analytical Letters 56(2): 390-403. https://doi.org/10.1080/00032719.2022.2083144

Piao S, Lee I, Kim S, Park H, Nagar H, Choi SJ, Lee EO, Jeon BH, Kim DW, Seo Y, Kim CS. (2023). CRIF1 siRNA-encapsulated PLGA nanoparticles suppress tumor growth in MCF-7 human breast cancer cells. International Journal of Molecular Sciences 24(8): 7453. https://doi.org/10.3390/ijms24087453

Poon W, Zhang YN, Ouyang B, Kingston BR, Wu JL, Wilhelm S, Chan WC. (2019). Elimination pathways of nanoparticles. ACS Nano 13(5): 5785-5798. https://doi.org/10.1021/acsnano.9b01383

Pullar RC. (2023). Applications of magnetic oxide nanoparticles in hyperthermia. In: Desimone MF, Jotania RB, editors, Magnetic nanoparticles for biomedical applications. Materials Research Forum LLC, 105 Springdale Lane, Millersville, PA 17551, USA. Pp. 76-101. https://doi.org/10.21741/9781644902332-3

Rajput S, Sharma PK, Malviya R. (2023). Fluid mechanics in circulating tumour cells: role in metastasis and treatment strategies. Medicine in Drug Discovery 18: 100158. https://doi.org/10.1016/j.medidd.2023.100158

Ramrakhiani L. (2022). Therapeutic nanoparticles: Advantages and toxicity. Indian Journal of Environment Engineering 2(1): 19-37. https://doi.org/10.54105/ijee.C1828.051322

Rao BVK, Pradhan A, Singh S, Dev A. (2022). An overview on nanoparticulate drug delivery system for its specific and targeted effects in various diseases. In: Jain AK, Mishra K, editors, Nanoparticles and nanocarriers based pharmaceutical formulations. Bentham Science Publishers. Pp. 55-92. https://doi.org/10.2174/9789815049787122010005

Raszewska-Famielec M, Flieger J. (2022). Nanoparticles for topical application in the treatment of skin dysfunctions—an overview of dermo-cosmetic and dermatological products. International Journal of Molecular Sciences 23(24): 15980. https://doi.org/10.3390/ijms232415980

Roche KC, Medik YB, Rodgers Z, Warner S, Wang AZ. (2019). Cancer nanotherapeutics administered by non-conventional routes. In: Rai P, Morris SA, editors, Nanotheranostics for cancer applications. Bioanalysis, volume 5, Springer Cham. Pp. 253-274. https://doi.org/10.1007/978-3-030-01775-0_11

Saini R. (2022). Role of Nanotechnology in Selective Targeting of Cancer. In: Goyal MK, Mishra SC, Dasarahalli-Huligowda LK, editors, Nanotechnology applications in agricultural and bioprocess engineering. Apple Academic Press. Pp. 175-187. https://doi.org/10.1201/9781003277439-10

Sakhi M, Khan A, Iqbal Z, Khan I, Raza A, Ullah A, Nasir F, Khan SA. (2022). Design and characterization of paclitaxel-loaded polymeric nanoparticles decorated with trastuzumab for the effective treatment of breast cancer. Frontiers in Pharmacology 13: 855294. https://doi.org/10.3389/fphar.2022.855294

Sarvari P, Sarvari P. (2023). Advances in nanoparticle-based drug delivery in cancer treatment. Global Translational Medicine 2(2): 0394. https://doi.org/10.36922/gtm.0394

Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. (2019). Hypoxia-targeted drug delivery. Chemical Society Reviews 48(3): 771-813. https://doi.org/10.1039/C8CS00304A

Shelin AR, Meenakshi S. (2023). Bionanomaterials–an emerging field of nanotechnology. Archives of Materials Science and Engineering 121(1): 33-41. https://doi.org/10.5604/01.3001.0053.7498

Shetty A, Lang H, Chandra S. (2023). Metal sulfide nanoparticles for imaging and phototherapeutic applications. Molecules 28(6): 2553. https://doi.org/10.3390/molecules28062553

Shewach DS, Kuchta RD. (2009). Introduction to cancer chemotherapeutics. Chemical Reviews 109(7): 2859-2861. https://doi.org/10.1021/cr900208x

Shin JH, Kim SS, Seo SR. (2023). Pyrrolidine dithiocarbamate suppresses cutibacterium acnes-induced skin inflammation. International Journal of Molecular Sciences 24(5): 4444. https://doi.org/10.3390/ijms24054444

Sinha T. (2018). Tumors: benign and malignant. Cancer Therapy & Oncology International Journal 10(3): 52-54. https://doi.org/10.19080/CTOIJ.2018.10.555790

Smita P, Narayan PA, Gaurav P. (2022). Therapeutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based practices. Frontiers in Oncology 12: 1015200. https://doi.org/10.3389/fonc.2022.1015200

Srirapu S. (2023). Monoclonal antibodies and their applications in cancer. Journal of Student Research 12(2). https://doi.org/10.47611/jsrhs.v12i2.4236

Steinberger, K. J. (2023). Hypoxia regulates vessel-modifying macrophages and vice versa in tumors. Ph.D Thesis, West Virginia University, USA. https://doi.org/10.33915/etd.11974

Subhan MA. (2022). Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics. RSC Advances 12(51): 32956-32978. https://doi.org/10.1039/D2RA02005J

Terzic J, Abu el Maaty MA, Lutzing R, Vincent A, El Bizri R, Jung M, Keime C, Metzger D. (2023). Hypoxia‐inducible factor 1A inhibition overcomes castration resistance of prostate tumors. EMBO Molecular Medicine 15(6): e17209. https://doi.org/10.15252/emmm.202217209

Theivendran S, Lazarev S, Yu C. (2023, June). Mesoporous silica/organosilica nanoparticles for cancer immunotherapy. Exploration 3(3): 20220086. https://doi.org/10.1002/EXP.20220086

Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. (2022). Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. Journal of Hematology & Oncology 15(1): 132. https://doi.org/10.1186/s13045-022-01320-5

Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V. (2023). Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering 10(7): 760. https://doi.org/10.3390/bioengineering10070760

Tracey SR, Smyth P, Barelle CJ, Scott CJ. (2021). Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface. Biochemical Society Transactions 49(5): 2253-2269. https://doi.org/10.1042/BST20210343

Tran L, Park S. (2021). Highly sensitive detection of dengue biomarker using streptavidin-conjugated quantum dots. Scientific Reports 11(1): 15196. https://doi.org/10.1038/s41598-021-94172-x

Tran NQ, Nguyen CK, Nguyen TP. (2013). Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Advances in Natural Sciences: Nanoscience and Nanotechnology 4(4): 045013. https://doi.org/10.1088/2043-6262/4/4/045013

Ullah F, Iqbal Z, Khan A, Khan SA, Ahmad L, Alotaibi A, Ullah R, Shafique M. (2022). Formulation development and characterization of pH responsive polymeric nano-pharmaceuticals for targeted delivery of anti-cancer drug (methotrexate). Frontiers in Pharmacology 13: 911771. https://doi.org/10.3389/fphar.2022.911771

Van Zundert I, Bravo M, Deschaume O, Cybulski P, Bartic C, Hofkens J, Uji-I, Fortuni B, Rocha S. (2021). Versatile and robust method for antibody conjugation to nanoparticles with high targeting efficiency. Pharmaceutics 13(12): 2153. https://doi.org/10.3390/pharmaceutics13122153

Vanbilloen WJ, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. (2023). Nanoparticle strategies to improve the delivery of anticancer drugs across the blood–brain barrier to treat brain tumors. Pharmaceutics 15(7): 1804. https://doi.org/10.3390/pharmaceutics15071804

Webster MR, Kugel CH, Weeraratna AT. (2017). When metastasis' Spns' out of control: Coverage of' Genome-wide in vivo screen identifies novel host regulators of metastatic colonization'. Pigment Cell & Melanoma Research 30(4): 384-385. https://doi.org/10.1111/pcmr.12588

Wolfram J, Ferrari M. (2019). Clinical cancer nanomedicine. Nano today 25: 85-98. https://doi.org/10.1016/j.nantod.2019.02.005

Xie X. (2023). Application of nanomedicine in diagnostic technology. Highlights in Science, Engineering and Technology 40: 125-131. https://doi.org/10.54097/hset.v40i.6577

Yadav AR, Mohite SK. (2020). Cancer-A silent killer: An overview. Asian Journal of Pharmaceutical Research 10(3): 213-216. http://dx.doi.org/10.5958/2231-5691.2020.00036.2

Yildirim A, Akalin H, Dundar M. (2023). Oncogenic genomic changes in cancer. In: Tuli HS, Yerer Aycan MB, editors, Oncology: Genomics, precision medicine and therapeutic targets. Springer, Singapore. https://doi.org/10.1007/978-981-99-1529-3_2

Yoo J, Park C, Yi G, Lee D, Koo H. (2019). Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11(5): 640. https://doi.org/10.3390/cancers11050640

Zhang RX, Li LY, Li J, Xu Z, Abbasi AZ, Lin L, Amini MA, Weng WY, Sun Y, Rauth AM, Wu XY. (2017). Coordinating biointeraction and bioreaction of a nanocarrier material and an anticancer drug to overcome membrane rigidity and target mitochondria in multidrug‐resistant cancer cells. Advanced Functional Materials 27(39): 1700804. https://doi.org/10.1002/adfm.201700804

Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T, Roden RBS, Chen Y, Yang R. (2006). Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clinical Cancer Research 12(16): 4933-4939. https://doi.org/10.1158/1078-0432.CCR-05-2831

Zhao D, Liu J, Zhou Y, Zhang L, Zhong Y, Yang Y, Zhao B, Yang M, Wang YA. (2023). Penetrating the blood–brain barrier for targeted treatment of neurotoxicant poisoning by nanosustained-released 2-PAM@ VB1-MIL-101-NH2 (Fe). ACS Applied Materials & Interfaces 15(10): 12631-12642. https://doi.org/10.1021/acsami.2c18929

Zhong YT, Cen Y, Xu L, Li SY, Cheng H. (2023). Recent progress in carrier‐free nanomedicine for tumor phototherapy. Advanced Healthcare Materials 12(4): 2202307. https://doi.org/10.1002/adhm.202202307

Downloads

Published

11-01-2025

How to Cite

Ambrose, S., Khan, A. M. A., Liaqat, I., Nawaz, M. R., Tariq, M. T., Masih, S., Basharat, S. I., Bajwa, M. U. Y., Zufiqar, A., Naeem, L., & Talib, M. T. (2025). Targeted and efficient therapeutic effect of nanoparticles against malignant tumor: Nanoparticles against tumor. Letters In Animal Biology, 5(1), 19–29. https://doi.org/10.62310/liab.v5i1.175

Issue

Section

Review Articles
Recieved 2024-10-26
Accepted 2025-01-10
Published 2025-01-11

Most read articles by the same author(s)