Antimicrobial resistance and antimicrobial activity of plant-based antimicrobial peptides against bacteria

Plant-based antimicrobial peptides

Authors

  • Asif Ali University of Layyah, Layyah, Pakistan
  • Silla Ambrose University of Agriculture, Faisalabad, Pakistan https://orcid.org/0009-0004-3189-3689
  • Dilawar Hussain University of Agriculture, Faisalabad, Pakistan
  • Faisal Hafeez University of Agriculture, Faisalabad, Pakistan
  • Tayyaba Asghar University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Syed Noraiz Arif Shah University of Agriculture, Faisalabad, Pakistan
  • Momina Ahsan University of Agriculture, Faisalabad, Pakistan
  • Muhammad Shakir University of Veterinary and Animal Sciences, Lahore, Pakistan https://orcid.org/0009-0001-4904-1562
  • Arsam Ali Livestock and Dairy Development Department, Punjab, Pakistan
  • Arslan Muhammad Ali Khan University of Agriculture, Faisalabad, Pakistan https://orcid.org/0009-0001-8292-5810
  • Muhammad Usama Javed University of Agriculture, Faisalabad, Pakistan https://orcid.org/0009-0009-5051-7247

DOI:

https://doi.org/10.62310/liab.v4i2.148

Keywords:

Antimicrobial peptides, Antibiotic resistance, Mechanism of action, Human Health

Abstract

Antimicrobial peptides (AMPs) are a class of short, usually positively charged, polypeptides which are widely used to overcome the threat of the antimicrobial resistance. The potential of the AMPs is increasing as a new class of antibiotics. They have a broad range of activity against the gram positive bacteria, gram negative bacteria, and fungi. Different kinds of plant based AMPs like thionins, defensins, cyclotides, knottins, snakins and some others are discussed in this review with their potential as antimicrobials – such as regulating plant growth and development and treating many human diseases with a great efficacy. Use of AMPs in agriculture and disease treatment is gaining interest. This review also focuses on the mechanism of action of the AMPs and their potential applications in agriculture and human health.

Metrics

Metrics Loading ...

References

Andrade-Pavon D, Sanchez-Sandoval E, Rosales-Acosta B, Ibarra JA, Tamariz J, Hernandez-Rodriguez C, Villa-Tanaca L. (2014). The 3-hydroxy-3-methylglutaryl coenzyme-A reductases from fungi: a proposal as a therapeutic target and as a study model. Revista Iberoamericana de Micologia 31(1): 81-85.

Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, Chamcheu JC. (2022). Nutritional and pharmaceutical applications of under-explored knottin peptide-rich phytomedicines. Plants 11(23): 3271. https://doi.org/10.3390/plants11233271

Azmi S, Khatoon S, Hussain MK. (2021). Assessment of antimicrobial phytopeptides: lipid transfer protein and hevein-like peptide in the prospect of structure, function and allergenic effect. Beni-Suef University Journal of Basic and Applied Sciences 10: 1-11. https://doi.org/10.1186/s43088-021-00158-z

Bakare OO, Gokul A, Fadaka, AO, Wu R, Niekerk LA, Barker AM, Klein A. (2022). Plant antimicrobial peptides (PAMPs): features, applications, production, expression, and challenges. Molecules 27(12): 3703. https://doi.org/10.3390/molecules27123703

Banger S, Singh R, Tripathi N, Pal V, Goel A. (2019). One-step purification and characterization of Abrin toxin from Abrus Precatorius seeds. Defence Life Science Journal 4(4): 231-235.

Barashkova AS, Rogozhin EA. (2020). Isolation of antimicrobial peptides from different plant sources: Does a general extraction method exist? Plant Methods 16(1): 143. https://doi.org/10.1186/s13007-020-00687-1

Bechinger B, Gorr SU. (2017). Antimicrobial peptides: mechanisms of action and resistance. Journal of Dental Research 96(3): 254-260. https://doi.org/10.1177/0022034516679973

Begum J, Mir NA. (2023). Molecular mechanisms of biofilm resistance against antibiotics. Letters in Animal Biology 3(1): 17–27. https://doi.org/10.62310/liab.v3i1.107

Bennani H, Mateus A, Mays N, Eastmure E, Stark KD, Hasler B. (2020). Overview of evidence of antimicrobial use and antimicrobial resistance in the food chain. Antibiotics 9(2): 49. https://doi.org/10.3390/antibiotics9020049

Breithaupt H. (1999). The new antibiotics. Nature Biotechnology 17: 1165–1169. https://doi.org/10.1038/70705

Boparai JK, Sharma PK. (2020). Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein and Peptide Letters 27(1): 4-16. https://doi.org/10.2174/0929866526666190822165812

Bruno F, Malvaso A, Canterini S, Bruni AC. (2022). Antimicrobial Peptides (AMPs) in the pathogenesis of Alzheimer’s disease: Implications for diagnosis and treatment. Antibiotics 11(6): 726. https://doi.org/10.3390/antibiotics11060726

Cassone M, Otvos L Jr. (2010). Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Review of Anti-infective Therapy 8(6): 703–716. https://doi.org/10.1586/eri.10.38

Caudill MA, Obeid R, Derbyshire E, Bernhard W, Lapid K, Walker SJ, Zeisel SH. (2020). Building better babies: should choline supplementation be recommended for pregnant and lactating mothers? Literature overview and expert panel consensus. European Gynecology and Obstetrics 2(3):149-161

Dadgostar P. (2019). Antimicrobial resistance: Implications and costs. Infection and Drug Resistance 12: 3903-3910. https://doi.org/10.2147/IDR.S234610

Datta M, Rajeev A, Chattopadhyay I. (2023). Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnology and Genetic Engineering Reviews 1-39. https://doi.org/10.1080/02648725.2023.2199572

Decker AP, Mechesso AF, Wang G. (2022). Expanding the landscape of amino acid-rich antimicrobial peptides: definition, deployment in nature, implications for peptide design and therapeutic potential. International Journal of Molecular Sciences 23(21): 12874. https://doi.org/10.3390/ijms232112874

Deplazes E, Chin YKY, King GF, Mancera RL. (2020). The unusual conformation of cross‐strand disulfide bonds is critical to the stability of β‐hairpin peptides. Proteins 88(3): 485-502. https://doi.org/10.1002/prot.25828

Di Franco S, Alfieri A, Pace MC, Sansone P, Pota V, Fittipaldi C, Fiore M, Passavanti MB. (2021). Blood stream infections from MDR bacteria. Life 11(6): 575. https://doi.org/10.3390/life11060575

Finkina EI, Melnikova DN, Bogdanov IV. (2016). Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Naturae 8(2): 47-61.

French G. (2005). Clinical impact and relevance of antibiotic resistance. Advanced Drug Delivery Reviews 57(10): 1514-1527. https://doi.org/10.1016/j.addr.2005.04.005

Fry DE. (2018). Antimicrobial peptides. Surgical Infections 19(8): 804-811. https://doi.org/10.1089/sur.2018.194

Games PD, daSilva EQG, Barbosa MDO, Almeida-Souza HO, Fontes PP, deMagalhaes-Jr MJ, Baracat-Pereira MC. (2016). Computer aided identification of a Hevein-like antimicrobial peptide of bell pepper leaves for biotechnological use. BMC Genomics 17: 1-13. https://doi.org/10.1186/s12864-016-3332-8

Hilchie AL, Wuerth K, Hancock RE (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nature Chemical Biology 9: 761–768. https://doi.org/10.1038/nchembio.1393

Hurley RL, Barre LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA. (2006). Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. Journal of Biological Chemistry 281(48): 36662-36672. https://doi.org/10.1074/jbc.M606676200

Inoue H. (2019). Strategic approach for combating antimicrobial resistance (AMR). Global Health and Medicine 1(2): 61-64. https://doi.org/10.35772/ghm.2019.01026

Ishaq N, Bilal M, Iqbal HM. (2019). Medicinal potentialities of plant defensins: A review with applied perspectives. Medicines 6(1): 29. https://doi.org/10.3390/medicines6010029

Islam SU. (2022). Gram-negative bacteria. Infectious Diseases 63-118. https://doi.org/10.1016/B978-0-443-18742-1.00026-9

Janik E, Ceremuga M, Niemcewicz M, Bijak M. (2020). Dangerous pathogens as a potential problem for public health. Medicina 56(11): 591. https://doi.org/10.3390/medicina56110591

Kausar M, Saleem Z, Azhar R, Rukhsar G, Ali M, Fan C, Wei Cr, Khan AMA. (2023). Role of nanoparticles in COVID-19 management. In: Sindhu ZuD, B Aslam, U Uslu, M Mohsin, editors, Complementary and alternative medicine: One health perspective, FahumSci, Lahore, Pakistan. pp: 72-80. https://doi.org/10.61748/CAM.2023/010

Khan AMA, Wei CR, Fatima K, Ali A, Akram MS, Saeed Z, Shahood SA, Ullah H. (2023). Use of various types of nanoparticles as an antioxidant for the inhibition of bacterial infections with benefits to intestinal microbiota and immune response. In: Sindhu ZuD, B Aslam, U Uslu, M Mohsin, editors, Complementary and alternative medicine: One health perspective, FahumSci, Lahore, Pakistan. pp: 81-87. https://doi.org/10.61748/CAM.2023/011

Kumar P, Kizhakkedathu JN, Straus SK. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8(1): 4. https://doi.org/10.3390/biom8010004

Lei J, Sun L, Huang S, Zhu C, Li P, He J, He Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research 11(7): 3919-3931.

Li J, Hu S, Jian W, Xie C, Yang X. (2021). Plant antimicrobial peptides: structures, functions, and applications. Botanical Studies 62(1): 5. https://doi.org/10.1186/s40529-021-00312-x

Li S, Wang Y, Xue Z, Jia Y, Li R, He C, Chen H. (2021). The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends in Food Science and Technology 109: 103-115. https://doi.org/10.1016/j.tifs.2021.01.005

Lima AM, Azevedo MI, Sousa LM, Oliveira NS, Andrade CR, Freitas CD, Souza PF. (2022). Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications. International Journal of Biological Macromolecules 214: 10-21. https://doi.org/10.1016/j.ijbiomac.2022.06.043

Linz MS, Mattappallil A, Finkel D, & Parker D. (2023). Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics 12(3): 557. https://doi.org/10.3390/antibiotics12030557

Lipkin RB, Lazaridis T. (2015). Implicit membrane investigation of the stability of antimicrobial peptide β-barrels and arcs. The Journal of Membrane Biology 248: 469-486. https://doi.org/10.1007/s00232-014-9759-4

Lopez-Cano A, Ferrer-Miralles N, Sanchez J, Carratala JV, Rodriguez XR, Ratera I, Guasch J, Pich OQ, Bierge P, Garcia-de-la-Maria C, Miro JM, Gracia-Fruitos E, Aris A, Investigators F. (2023). A novel generation of tailored antimicrobial drugs based on recombinant multidomain proteins. Pharmaceutics 15(4): 1068. https://doi.org/10.3390/pharmaceutics15041068

Luo Y, Song Y. (2021). Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. International Journal of Molecular Sciences 22(21): 11401. https://doi.org/10.3390/ijms222111401

Matkawala F, Nighojkar A, Kumar A. (2019). Antimicrobial Peptides in Plants: Classes, Databases, and Importance. Canadian Journal of Biotechnology 3(2): 158. https://doi.org/10.24870/cjb.2019-000130

Mattar C, Edwards S, Baraldi E, Hood J. (2020). An overview of the global antimicrobial resistance research and development hub and the current landscape. Current Opinion in Microbiology 57: 56-61. https://doi.org/10.1016/j.mib.2020.06.009

Maximiano MR, Franco OL. (2021). Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides 140: 170531. https://doi.org/10.1016/j.peptides.2021.170531

Mhlongo JT, Waddad AY, Albericio F, de la Torre BG. (2023). Antimicrobial peptide synergies for fighting infectious diseases. Advanced Science 10(26): e2300472. https://doi.org/10.1002/advs.202300472

Mikucki A, McCluskey NR, Kahler CM. (2022). The host-pathogen interactions and epicellular lifestyle of Neisseria meningitidis. Frontiers in Cellular and Infection Microbiology 12: 862935. https://doi.org/10.3389/fcimb.2022.862935

Moo CL, Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Lai KS. (2020). Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Current Drug Discovery Technologies 17(4): 430-447. https://doi.org/10.2174/1570163816666190304122219

Odintsova T, Shcherbakova L, Slezina M, Pasechnik T, Kartabaeva B, Istomina E, Dzhavakhiya V. (2020). Hevein-like antimicrobial peptides WAMPs: Structure–function relationship in antifungal activity and sensitization of plant pathogenic fungi to tebuconazole by WAMP-2-derived peptides. International Journal of Molecular Sciences 21(21): 7912. https://doi.org/10.3390/ijms21217912

Olga K, Marina K, Alexey A, Anton S, Vladimir Z, Igor T. (2020). The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors. Biological Communications 65(2): 187-199. https://doi.org/10.21638/spbu03.2020.205

Oliveira Junio, Reygaert WC. (2023). Gram Negative Bacteria. In: StatPearls. Treasure Island (FL), StatPearls Publishing, St. Petersburg, Florida, USA. PMID: 30855801

Palma E, Tilocca B, Roncada P. (2020). Antimicrobial resistance in veterinary medicine: An overview. International Journal of Molecular Sciences 21(6): 1914. https://doi.org/10.3390/ijms21061914

Pinto MEF, Najas JZ, Magalhaes LG, Bobey AF, Mendonça JN, Lopes NP, Leme FvM, Teixeira SP, Trovó M, Andricopulo AD. (2018). Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria. Journal of Natural Products 81(5): 1203-1208. https://doi.org/10.1021/acs.jnatprod.7b00969

Salimi F, Zare EN. (2023). Current scenario on the microbial world and associated diseases. In Kumar a, Behera A, Bilal M, Gupta R, Nguyen TA, editors, Antiviral and antimicrobial smart coatings, Elsevier, pp. 71-86. https://doi.org/10.1016/b978-0-323-99291-6.00006-2

Santos-Silva CAD, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, Ferreira JDC, de Oliveira-Silva RL, de Jesus Pires C, Aburjaile FF, de Oliveira MF, Kido EA, Crovella S, Benko-Iseppon AM. (2020). Plant antimicrobial peptides: state of the art, in silico prediction and perspectives in the omics era. Bioinformatics and Biology Insights 14: 1-22. https://doi.org/10.1177/1177932220952739

Sathoff AE, Velivelli S, Shah DM, Samac DA. (2019). Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109(3): 402-408. https://doi.org/10.1094/PHYTO-09-18-0331-R

Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, Tarhriz V. (2020). Antimicrobial peptides (AMPs): roles, functions and mechanism of action. International Journal of Peptide Research and Therapeutics 26: 1451-1463. https://doi.org/10.1007/s10989-019-09946-9

Shah M, Meenakshi K, George IA. (2023). Abrus precatorius (Rosary Pea). In: Husen A, editor, Exploring poisonous plants: Medicinal values, toxicity responses, and therapeutic uses, CRC Press, Boca Raton. pp. 87-99.

Shahrour H, Ferrer-Espada R, Dandache I, Barcena-Varela S, Sanchez-Gomez S, Chokr A, Martinez-de-Tejada G. (2019). AMPs as anti-biofilm agents for human therapy and prophylaxis. Advances in Experimental Medicine and Biology 1117: 257-279. https://doi.org/10.1007/978-981-13-3588-4_14

Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. (2021). Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules 26(13): 4032. https://doi.org/10.3390/molecules26134032

Sharma R, Nimonkar Y, Sharma A, Rathore RS, Prakash O. (2018). Concept of microbial preservation: Past, present and future. In: Sharma SK, Varma A, editors, Microbial resource conservation: Conventional to modern approaches. Springer Cham, Switzerland. pp. 35-54. https://doi.org/10.1007/978-3-319-96971-8

Shi W, Hou T, Liu W, Guo D, He H. (2019). The hypolipidemic effects of peptides prepared from Cicer arietinum in ovariectomized rats and HepG2 cells. Journal of the Science of Food and Agriculture 99(2): 576-586. https://doi.org/10.1002/jsfa.9218

Shoaib M, Xu J, Meng X, Wu Z, Hou X, He Z, Shang R, Zhang H, Pu W. (2023). Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China. Frontiers in Cellular and Infection Microbiology 13: 1183390. https://doi.org/10.3389/fcimb.2023.1183390

Sinha R, Shukla P. (2019). Antimicrobial peptides: recent insights on biotechnological interventions and future perspectives. Protein and Peptide Letters 26(2): 79-87. https://doi.org/10.2174/0929866525666181026160852

Talapko J, Mestrovic T, Juzbasic M, Tomas M, Eric S, Horvat Aleksijevic L, Skrlec I. (2022). Antimicrobial peptides—Mechanisms of action, antimicrobial effects and clinical applications. Antibiotics 11(10): 1417. https://doi.org/10.3390/antibiotics11101417

Tam JP, Wang S, Wong KH, Tan WL. (2015). Antimicrobial peptides from plants. Pharmaceuticals 8(4): 711-757. https://doi.org/10.3390/ph8040711

Tang KWK, Millar BC, Moore JE. (2023). Antimicrobial resistance (AMR). British Journal of Biomedical Science 80: 11387. https://doi.org/10.3389/bjbs.2023.11387

Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. (2018). Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 154: 94-105. https://doi.org/10.1016/j.phytochem.2018.07.002

Tiwari P, Srivastava Y, Sharma A, Vinayagam R. (2023). Antimicrobial peptides: The production of novel peptide-based therapeutics in plant systems. Life 13(9): 1875. https://doi.org/10.3390/life13091875

Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, Zhu NI. (2019). Differential drivers of antimicrobial resistance across the world. Accounts of Chemical Research 52(4): 916-924. https://doi.org/10.1021/acs.accounts.8b00643

Wang X, van Beekveld RA, Xu Y, Parmar A, Das S, Singh I, Breukink E. (2023). Analyzing mechanisms of action of antimicrobial peptides on bacterial membranes requires multiple complimentary assays and different bacterial strains. Biochimica et Biophysica Acta (BBA)-Biomembranes 1865(6): 184160. https://doi.org/10.1016/j.bbamem.2023.184160

Weidmann J, Craik DJ. (2016). Discovery, structure, function, and applications of cyclotides: circular proteins from plants. Journal of Experimental Botany 67(16): 4801-4812. https://doi.org/10.1093/jxb/erw210

Wilson M, Wilson PJK. (2021). Microbes and infectious diseases. In: Wilson M, Wilson PJK, editors, Close encounters of the microbial kind. Springer Cham, Switzerland. pp. 3–48. https://doi.org/10.1007/978-3-030-56978-5_1

Xiao Z. (2023). Antimicrobial resistance mechanisms: using examples from gram-positive and gram-negative bacteria. In: Second International Conference on Biological Engineering and Medical Science (ICBioMed 2022), Imperial College, London, 01 March 2023.

Yasir M, Willcox MDP, Dutta D. (2018). Action of antimicrobial peptides against bacterial biofilms. Materials 11(12): 2468. https://doi.org/10.3390/ma11122468

Yili A, Maksimov V, Ma QL, Gao YH, Veshkurova O, Salikhov S, Aisa HA. (2014). Antimicrobial peptides from the plants. Journal of Pharmacy and Pharmacology 2(1): 627-641. https://doi.org/10.17265/2328-2150/2014.11.00

Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Fu CY. (2021). Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research 8(48): 1-25. https://doi.org/10.1186/s40779-021-00343-2

Downloads

Published

27-07-2024

How to Cite

Ali, A., Ambrose, S., Hussain, D., Hafeez, F., Asghar, T., Shah, S. N. A., Ahsan, M., Shakir, M., Ali, A., Khan, A. M. A., & Javed, M. U. (2024). Antimicrobial resistance and antimicrobial activity of plant-based antimicrobial peptides against bacteria: Plant-based antimicrobial peptides. Letters In Animal Biology, 4(2), 19–27. https://doi.org/10.62310/liab.v4i2.148

Issue

Section

Review Articles
Recieved 2024-06-03
Accepted 2024-07-23
Published 2024-07-27

Most read articles by the same author(s)