Vaccination and non-antibiotic strategies for effective control of multidrug-resistant Salmonella bacteria of medical and veterinary importance

Authors

  • Ahmed Shandookh Hameed Medical Lab Techniques, Nassiriya Technical Institute Organization, Southern Technical University, Iraq
  • Jannat Riaz Department of Eastern Medicine, Faculty of Life Sciences, Government College University Faisalabad, Pakistan
  • Ahmed Raheem Rayshan Department of Physiology, Pharmacology and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
  • Areej Salih Saihood Al-Kinani Department of Anatomy, College of Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
  • Anwar Saleh Saihood Al-Kinani Department of Microbiology, College of Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
  • Ammar Younas School of Humanities, University of Chinese Academy of Sciences, Beijing, China
  • Rawaa Najim Alkhamessi Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
  • Mustafa Jawad Kadham Forensic Evidence Department, College of Science, Al-Fahidi University, Baghdad, Iraq
  • Mirza Muhammad Haris Faculty of Life Sciences, Institute of Microbiology, Government College University Faisalabad, Pakistan https://orcid.org/0009-0006-3352-1947
  • Ayesha Bintay Farooq Department of Physiology, Life sciences, Government College University Faisalabad, Pakistan
  • Silla Ambrose Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan
  • Arslan Muhammad Ali Khan Department of Parasitology, University of Agriculture Faisalabad, 38040, Pakistan https://orcid.org/0009-0001-8292-5810

DOI:

https://doi.org/10.62310/liab.v5i1.255

Keywords:

Salmonella, Vaccination, Probiotics, Bacteriophages, Organic acids, Essential oils

Abstract

With conservatively estimated millions of illnesses and deaths each year, most of which are caused by food contamination, Salmonella is now a threat and economic cost to the world. Traditional control measures become challenging because of the extensive variety of serovars of the Salmonella bacterium, coupled with increased antimicrobial resistance. With special focus on animal reservoir immunization strategies and new antibiotic regimens, the review critically assesses current and potential future control measures against Salmonella infection. Live-attenuated, inactivated, subunit, and novel DNA/mRNA platforms are some of the vaccines that attenuate pathogen shedding and zoonotic transmission in animals to a considerable degree. Maintaining the integrity of the gut microbiome, or host immune system activation through adjunct mechanisms like probiotics, bacteriophages, organic acids, essential oils, phytobiotics, and immunomodulators, present non-antibiotic options. Successful control of Salmonella requires a combination of strong biosecurity, farm management, and "One Health" strategy together with intersectoral coordination and improved surveillance. To become more acceptable and contribute towards the long-term influence on public health, both legal obstacles and financial barriers will have to be overcome. This article presents these key points concerning the transmission of the infection and pathogenesis of Salmonella. The vaccine and alternative measures utilized for control of the transmission are also highlighted.

Metrics

Metrics Loading ...

References

Abd El-Ghany WA. (2020). Phytobiotics in poultry industry as growth promoters, antimicrobials and immunomodulators–A review. Journal of World's Poultry Research 10(4): 571-579. https://dx.doi.org/10.36380/jwpr.2020.65

Aehle S, Curtiss Iii R. (2017). Current and future perspectives on development of Salmonella vaccine technologies. In: Ricke SC, Gast RK, editors, Producing Safe Eggs: Microbial Ecology of Salmonella. Academic Press, Elesvier. Pp. 281-299. https://doi.org/10.1016/B978-0-12-802582-6.00014-8

Al-Harrasi A, Bhatia S, Behl T, Kaushik D, Ahmed MM, Anwer K. (2022). Antibacterial mechanism of action of essential oils. In: Al-Harrasi A, Bhatia S, Behl T, Kaushik D, Anwer K, Ahmed MM, Babu P, Sharma A, Kabir MT, Mittal V, editors, Role of Essential Oils in the Management of COVID-19. CRC Press, Boca Raton. Pp. 227-237

Alsayed AR, Permana AD. (2024). Bacteriophages therapy: exploring their promising role in microbiome modulation and combatting antibiotic resistance. OBM Genetics 8(2): 1-8. https://doi.org/10.21926/obm.genet.2402237

Arya G, Holtslander R, Robertson J, Yoshida C, Harris J, Parmley J, Nichani A, Johnson R, Poppe C. (2017). Epidemiology, pathogenesis, genoserotyping, antimicrobial resistance, and prevention and control of non-typhoidal Salmonella serovars. Current Clinical Microbiology Reports 4(1): 43-53. https://doi.org/10.1007/s40588-017-0057-7

Ayalp G, Borum AE, Akyol ET. (2025). The use of probiotic footbaths for the treatment of ovine interdigital dermatitis. Kafkas Universitesi Veteriner Fakultesi Dergisi 31(2): 197-205. https://doi.org/10.9775/kvfd.2024.33091

Ayuti SR, Khairullah AR, Al-Arif MA, Lamid M, Warsito SH, Moses IB, Hermawan IP, Silaen OSM, Lokapirnasari WP, Aryaloka S. (2024). Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open Veterinary Journal 14(6): 1313-1329. https://doi.org/10.5455/OVJ.2024.v14.i6.1

Bagheri E, Shori AB, Peng CW, Baba AS, Alzahrani AJ. (2024). Phytochemical analysis and medicinal properties of some selected traditional medicinal plants. International Journal of Agriculture and Biosciences 13(4): 689-700. https://doi.org/10.47278/journal.ijab/2024.177

Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. (2024). Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 12(1): eesp-0004. https://doi.org/10.1128/ecosalplus.esp-0004-2023

Bearson BL, Bearson SMD, Brunelle BW, Bayles DO, Lee IS, Kich JD. (2017). Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine. Journal of Medical Microbiology 66(5): 651-661. https://doi.org/10.1099/jmm.0.000482

Borovikov S, Kuibagarov M, Akibekov O, Muranets A. (2024). Clinical case of Salmonella detected in an aborted mare fetus and its characteristics. International Journal of Veterinary Science 13(3): 357-361. https://doi.org/10.47278/journal.ijvs/2023.103

Cameron A, McAllister TA. (2019). Could probiotics be the panacea alternative to the use of antimicrobials in livestock diets? Beneficial Microbes 10(7): 773-800. https://doi.org/10.3920/BM2019.0059

Carneiro DG, Vidigal PMP, Morgan T, Vanetti MCD. (2024). Genome sequencing and analysis of Salmonella enterica subsp. enterica serotype Enteritidis PT4 578: insights into pathogenicity and virulence. Access Microbiology 6(11): 000828-v000823. https://doi.org/10.1099/acmi.0.000828.v3

Cawthraw SA, Goddard A, Huby T, Ring I, Chiverton L, Mueller-Doblies D. (2024). Early vaccination of laying hens with the live bivalent Salmonella vaccine AviPro™ Salmonella DUO results in successful vaccine uptake and increased gut colonization. Frontiers in Microbiology 14: 1327739. https://doi.org/10.3389/fmicb.2023.1327739

Chagas DB, Santos FDS, de Oliveira NR, Bohn TLO, Dellagostin OA. (2024). Recombinant live-attenuated Salmonella vaccine for veterinary use. Vaccines 12(12): 1319. https://doi.org/10.3390/vaccines12121319

Cho Y, Kang Z.-W, Kang KS, Jeong S, Yoon HJ, Suh S, Hahn TW. (2013). Efficacy and clinical trials of Salenvac-T, bivalent killed vaccine containing Salmonella Enteritidis and Salmonella Typhimurium. Korean Journal of Veterinary Research 53(1): 43-48. https://doi.org/10.14405/kjvr.2013.53.1.043

Coniglio MV, Luna MJ, Provensal P, Watson S, Ortiz ME, Ludueña HR, Cavaglieri L, Magnoli AP. (2023). Use of the probiotic Saccharomyces cerevisiae var. boulardii RC009 in the rearing stage of calves. International Journal of Agriculture and Biosciences 12(3): 188-192. https://doi.org/10.47278/journal.ijab/2023.063

Corti Isgro M, Magnoli A, Poloni V, Rosales L, Luna MJ, Carranza A, Cavaglieri L, Parada J. (2024). Enhancing sow and piglet performance: evaluation of a probiotic additive of Saccharomyces boulardii RC009 from late gestation through lactation. International Journal of Agriculture and Biosciences 13(4): 836-841. https://doi.org/10.47278/journal.ijab/2025.016

Daniel Huberman Y, Caballero-Garcia M, Rojas R, Ascanio S, Hipolito Olmos L, Malena, R, Lomonaco J, Nievas P, Chero P, Levano-Gracia J. (2022). The efficacy of a trivalent inactivated Salmonella vaccine combined with the live S. Gallinarum 9R vaccine in young layers after experimental infections with S. Enteritidis, S. Typhimurium, and S. Infantis. Vaccines 10(7): 1113. https://doi.org/10.3390/vaccines10071113

De Veg B, Sirdesai S, Peterson R, Pinheiro M, Nuboer W, Kan A, Van Mierlo J. (2019). Efficiency of phage intervention against Salmonella in meat and poultry processing. Meat and Muscle Biology 3(2): 142. https://doi.org/10.22175/mmb.10823

Dhakal J, Aldrich CG. (2023). Application of acidulants to control Salmonella spp. in rendered animal fats and oils with different levels of unsaturation. Animals 13(8): 1304. https://doi.org/10.3390/ani13081304

Dolatyabi S, Renu S, Schrock J, Renukaradhya GJ. (2024). Chitosan-nanoparticle-based oral Salmonella enteritidis subunit vaccine elicits cross-protection against Salmonella typhimurium in broilers. Poultry Science 103(5): 103569. https://doi.org/10.1016/j.psj.2024.103569

Fàbrega A, Vila J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clinical Microbiology Reviews 26(2): 308-341. https://doi.org/10.1128/cmr.00066-12

Fayyaz A, Fatima J, Mahmood S, Khurram Y, Naz G, Aslam RS, Sarwar A, Sarwar F, Israr Y, Israr A, Ahmad A, Rafay A, Shehzad T. (2025). Role of probiotics in the control of Salmonella infections in animals and humans. Letters in Animal Biology 5(2): 06-16. https://doi.org/10.62310/liab.v5i2.202

Feng Z, Hag ME, Wang N, Qin T, Chen S, Peng D. (2023). Negative regulation of RpoS-mediated stm1703 in biofilm formation of Salmonella Pullorum. Pakistan Veterinary Journal 43(1): 25-32. https://doi.org/10.29261/pakvetj/2022.086

Gil C, Latasa C, García-Ona E, Lázaro I, Labairu J, Echeverz M, Burgui S, García B, Lasa I, Solano C. (2020). A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs. Veterinary Research 51(1): 3. https://doi.org/10.1186/s13567-019-0730-3

Gómez-García M, Argüello H, Puente H, Mencía-Ares Ó, González S, Miranda R, Rubio P, Carvajal A. (2020). In-depth in vitro evaluation of the activity and mechanisms of action of organic acids and essential oils against swine enteropathogenic bacteria. Frontiers in Veterinary Science 7: 572947. https://doi.org/10.3389/fvets.2020.572947

Hibstu Z, Belew H, Akelew Y, Mengist HM. (2022). Phage therapy: A different approach to fight bacterial infections. Biologics: Targets and Therapy 16: 173-186. https://doi.org/10.2147/BTT.S381237

Hosseini NG, Modarressi MH, Mousavi SN, Ebrahimi MT. (2018). Evaluation of novel probiotic Bacillus strains based on enzyme production and protective activity against salmonellosis. Journal of the Hellenic Veterinary Medical Society 69(4): 1205-1212. https://doi.org/10.12681/jhvms.16089

Hu Yoo, Hugerth LW, Bengtsson C, Alisjahbana A, Seifert M, Kamal A, Sjöling Å, Midtvedt T, Norin E, Du J. (2018). Bacteriophages synergize with the gut microbial community to combat Salmonella. mSystems 3(5) 10-1128. https://doi.org/10.1128/msystems.00119-18

Hu Z, Liu L, Guo F, Huang J, Qiao J, Bi R, Huang J, Zhang K, Guo Y, Wang Z. (2023). Dietary supplemental coated essential oils and organic acids mixture improves growth performance and gut health along with reduces Salmonella load of broiler chickens infected with Salmonella Enteritidis. Journal of Animal Science and Biotechnology 14(1): 95. https://doi.org/10.1186/s40104-023-00889-2

Iqbal T, Altaf S, Fatima M, Rasheed R, Laraib K, Azam M, Karamat M, Salma U, Usman S. (2024). A narrative review on effective use of medicinal plants for the treatment of parasitic foodborne diseases. Agrobiological Records 16: 79-92. https://doi.org/10.47278/journal.abr/2024.016

Jajere SM. (2019). A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Veterinary World 12(4): 504-521. https://doi.org/10.14202/vetworld.2019.504-521

Kosuri P, Muttathukonam SH, Reddyvari R, Gao M, Ren Y, Amalaradjou MA. (2025). Probiotic application reduces Salmonella Enteritidis contamination in layer hatching eggs and embryos. Poultry Science 104(9): 105389. https://doi.org/10.1016/j.psj.2025.105389

Khalid K, Poh CL. (2023). The promising potential of reverse vaccinology-based next-generation vaccine development over conventional vaccines against antibiotic-resistant bacteria. Vaccines 11(7): 1264. https://doi.org/10.3390/vaccines11071264

Khan MAS, Rahman SR. (2022). Use of phages to treat antimicrobial-resistant Salmonella infections in poultry. Veterinary Sciences 9(8): 438. https://doi.org/10.3390/vetsci9080438

Kilonzo-Nthenge A, Mukuna W. (2018). Salmonella and antimicrobial resistance in fresh produce. In: Mascellino MT, editor, Salmonella - A Re-emerging Pathogen. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.72894

Kinanti AS, Prihanto AA, Jatmiko YD, Kobun R, Felicia WXL. (2024). Harnessing bacteriophages: a promising approach to combat foodborne pathogen biofilms. International Journal of Agriculture and Biosciences 13(4): 656-668. https://doi.org/10.47278/journal.ijab/2024.172

Kirti N, Krishna SS, Shukla D. (2024). Salmonella infections: an update, detection and control strategies. In: Huang C, editor, Salmonella-Current Trends and Perspectives in Detection and Control. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.1004835

Kogut MH, Santin E. (2019). Advances in vaccines for controlling foodborne Salmonella spp. in poultry. In: Venkitanarayanan K, Thakur S, Ricke S, editors, Food Safety in Poultry Meat Production. Springer, Cham. Pp. 161-189. https://doi.org/10.1007/978-3-030-05011-5_8

Kombade S, Kaur N. (2021). Pathogenicity island in Salmonella. In: Lamas A, Regal P, Franco CM, editors, Salmonella spp.-A Global Challenge. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.96443

Kowalska JD, Nowak A, Śliżewska K, Stańczyk M, Łukasiak M, Dastych J. (2020). Anti-Salmonella potential of new Lactobacillus strains with the application in the poultry industry. Polish Journal of Microbiology 69(1): 5-18. https://doi.org/10.33073/pjm-2020-001

Kuria JKN. (2023). Salmonellosis in food and companion animals and its public health importance. In: Huang H, Naushad S, editors, Salmonella-Perspectives for Low-Cost Prevention, Control and Treatment. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.109324

Kutter E, Kuhl S, Alavidze Z, Blasdel B. (2005). Phage therapy: bacteriophages as natural, self-limiting antibiotics. In: Pizzorno JE, Murray MT, editors, Textbook of Natural Medicine. Elsevier, Churchill Livingstone. Pp. 945-956. https://doi.org/10.13140/2.1.1100.3840

Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H. (2024). Salmonellosis: an overview of epidemiology, pathogenesis, and innovative approaches to mitigate the antimicrobial resistant infections. Antibiotics 13(1): 76. https://doi.org/10.3390/antibiotics13010076

Lauer KB, Borrow R, Blanchard TJ. (2017). Multivalent and multipathogen viral vector vaccines. Clinical and Vaccine Immunology 24(1): e00298-00216. https://doi.org/10.1128/CVI.00298-16

Liang J, Yao L, Liu Z, Chen Y, Lin Y, Tian T. (2025). Nanoparticles in subunit vaccines: immunological foundations, categories, and applications. Small 21(1): 2407649. https://doi.org/10.1002/smll.202407649

Liu B, Wu Z, Liu T, Qian R, Wu T, Liu Q, Shen,A. (2018). Polymeric nanoparticles engineered as a vaccine adjuvant-delivery system. In: Immunization-Vaccine Adjuvant Delivery System and Strategies. IntechOpen, London, UK. http://dx.doi.org/10.5772/intechopen.81084

Lloren KKS, Lee JH. (2023). Live-attenuated Salmonella-based oral vaccine candidates expressing PCV2d Cap and Rep by Novel expression plasmids as a vaccination strategy for mucosal and systemic Immune responses against PCV2d. Vaccines 11(12): 1777. https://doi.org/10.3390/vaccines11121777

Lou L, Zhang P, Piao R, Wang Y. (2019). Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Frontiers in Cellular and Infection Microbiology 9: 270. https://doi.org/10.3389/fcimb.2019.00270

Lynch MF, Tauxe RV. (2009). Salmonellosis: nontyphoidal. In: Brachman P,Abrutyn E, editors, Bacterial Infections of Humans: Epidemiology and Control. Springer, Boston, MA. Pp. 677-698. https://doi.org/10.1007/978-0-387-09843-2_32

Magnoli AP, Parada J, Luna Marìa J, Corti M, Escobar FM, Fernández C, Coniglio MV, Ortiz ME, Wittouck P, Watson S, Cristofolini LA, Cavaglieri L. (2024). Impact of probiotic Saccharomyces cerevisiae var. boulardii RC009 alone and in combination with a phytase in broiler chickens fed with antibiotic-free diets. Agrobiological Records 16: 1-10. https://doi.org/10.47278/journal.abr/2024.006

Mahmoud DH, Ali AAA, Khalil AM, Amin YA, Ali AO. (2023). Low temperature-survivability behavior of Salmonella enterica subsp. Enterica serovar Typhimurium and Salmonella enterica subsp. enterica serovar Enteritidis in a minced beef meat model as an evaluation of the cold chain’s preserving-effectiveness. International Journal of Veterinary Science 12(6): 853-859. https://doi.org/10.47278/journal.ijvs/2023.052

Marasini, N., Kaminskas, L. M. (2019). Subunit-based mucosal vaccine delivery systems for pulmonary delivery-Are they feasible? Drug Development and Industrial Pharmacy 45(6): 882-894. https://doi.org/10.1080/03639045.2019.1583758

Marus JR, Magee MJ, Manikonda K, Nichols MC. (2019). Outbreaks of Salmonella enterica infections linked to animal contact: Demographic and outbreak characteristics and comparison to foodborne outbreaks—United States, 2009–2014. Zoonoses and Public Health. 66(4): 370-376. https://doi.org/10.1111/zph.12569

McWhorter AR, Chousalkar KK. (2018). A long-term efficacy trial of a live, attenuated Salmonella Typhimurium vaccine in layer hens. Frontiers in Microbiology 9: 1380. https://doi.org/10.3389/fmicb.2018.01380

Mehmood A, Nawaz M, Rabbani M, Mushtaq MH. (2023). Probiotic effect of limosilactobacillus fermentum on growth performance and competitive exclusion of Salmonella gallinarum in poultry. Pakistan Veterinary Journal 43(4): 659-664. http://dx.doi.org/10.29261/pakvetj/2023.103

Molina WPC, Riofrio MDP, Espinosa PMJ, Jurado MAS. (2024). Phage therapy against multiresistant bacteria. Interamerican Journal of Health Sciences 4: 91-91. https://doi.org/10.59471/ijhsc202491

Nair DVT, Kollanoor Johny A. (2019). Salmonella in poultry meat production. In: Venkitanarayanan K, Thakur S, Ricke S, editors, Food Safety in Poultry Meat Production. Springer, Cham. Pp. 1-24. https://doi.org/10.1007/978-3-030-05011-5_1

Naushad S, Ogunremi D, Huang H. (2023). Salmonella: A brief review. In: Huang H, Naushad S, editors, Salmonella—Perspectives for Low-Cost Prevention, Control and Treatment. IntechOpen, London, UK. Pp. 1-22. http://dx.doi.org/10.5772/intechopen.112948

Nazir J, Manzoor T, Saleem A, Gani U, Bhat SS, Khan S, Haq Z, Jha P, Ahmad SM. (2025). Combatting Salmonella: a focus on antimicrobial resistance and the need for effective vaccination. BMC infectious diseases 25(1): 84. https://doi.org/10.1186/s12879-025-10478-5

Nhara RB, Marume U, Nantapo CWT. (2024). Potential of organic acids, essential oils and their blends in pig diets as alternatives to antibiotic growth promoters. Animals 14(5): 762. https://doi.org/10.3390/ani14050762

Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. (2023). An outlook on the target‐based molecular mechanism of phytoconstituents as immunomodulators. Phytotherapy Research 37(11): 5058-5079. https://doi.org/10.1002/ptr.7969

Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. (2023). Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poultry Science 102(12): 103086. https://doi.org/10.1016/j.psj.2023.103086

Orimaye OE, Ekunseitan DA, Omaliko PC, Fasina YO. (2024). Mitigation potential of herbal extracts and constituent bioactive compounds on Salmonella in meat-type poultry. Animals 14(7): 1087. https://doi.org/10.3390/ani14071087

Palma M, Qi B. (2024). Advancing phage therapy: a comprehensive review of the safety, efficacy, and future prospects for the targeted treatment of bacterial infections. Infectious Disease Reports 16(6): 1127-1181. https://doi.org/10.3390/idr16060092

Palmer AD, Slauch JM. (2020). Envelope stress and regulation of the Salmonella pathogenicity Island 1 type III secretion system. Journal of Bacteriology 202(17): 10-1128. https://doi.org/10.1128/jb.00272-20

Patro S, Maiti S, Panda SK, Dey N. (2015). Utilization of plant-derived recombinant human β-defensins (hBD-1 and hBD-2) for averting salmonellosis. Transgenic Research 24(2): 353-364. https://doi.org/10.1007/s11248-014-9847-3

Pedersen L, Houe H, Rattenborg E, Nielsen LR. (2023). Semi-quantitative biosecurity assessment framework targeting prevention of the introduction and establishment of Salmonella Dublin in dairy cattle herds. Animals 13(16): 2649. https://doi.org/10.3390/ani13162649

Pelyuntha W, Yafa A, Ngasaman R, Yingkajorn M, Chukiatsiri K, Champoochana N, Vongkamjan K. (2022). Oral administration of a phage cocktail to reduce Salmonella colonization in broiler gastrointestinal tract—a pilot study. Animals 12(22): 3087. https://doi.org/10.3390/ani12223087

Poudel I, Adhikari PA. (2024). Combating the persistence of Salmonella infections in laying hens: nutritional, managemental and vaccination strategies. World's Poultry Science Journal 80(2): 423-452. https://doi.org/10.1080/00439339.2023.2298513

Qiao J, Shang Z, Liu X, Wang K, Wu Z, Wei Q, Li H. (2022). Regulatory effects of combined dietary supplementation with essential oils and organic acids on microbial communities of Cobb broilers. Frontiers in Microbiology 12: 814626. https://doi.org/10.3389/fmicb.2021.814626

Qureshi MHF, Azam F, Shafique M, Aslam B, Farooq M, Rafique MK, Meraj MT, Ahmed I. (2024). A one health perspective of pet birds bacterial zoonosis and prevention. Pakistan Veterinary Journal 44(1): 1-8. http://dx.doi.org/10.29261/pakvetj/2024.147

Rabetafika HN, Razafindralambo A, Ebenso B, Razafindralambo HL. (2023). Probiotics as antibiotic alternatives for human and animal applications. Encyclopedia 3(2): 561-581. https://doi.org/10.3390/encyclopedia3020040

Rabie NS, Fedawy HS, Sedeek DM, Bosila MA, Abdelbaki MM, Ghetas AM, Elbayoumi KM, Hassan ER, Girh ZMSA, Mekky HM. (2023). Isolation and serological identification of current Salmonella species recovered from broiler chickens in Egypt. International Journal of Veterinary Science12(2): 230-235. https://doi.org/10.47278/journal.ijvs/2022.169

Raccoursier M, Siceloff AT, Shariat NW. (2024). In silico and PCR screening for a live attenuated Salmonella Typhimurium vaccine strain. Avian Diseases 68(1): 18-24. https://doi.org/10.1637/aviandiseases-D-23-00051

Rajan K, Shi Z, Ricke SC. (2017). Current aspects of Salmonella contamination in the US poultry production chain and the potential application of risk strategies in understanding emerging hazards. Critical Reviews in Microbiology 43(3): 370-392. https://doi.org/10.1080/1040841X.2016.1223600

Rashid MHU, Mehwish, Wahab H, Ahmad S, Ali L, Ahmad N, Ali M, Fazal H. (2024). Unraveling the combinational approach for the antibacterial efficacy against infectious pathogens using the herbal extracts of the leaves of Dodonaea viscosa and fruits of Rubus fruticosus. Agrobiological Records 16: 57-66. https://doi.org/10.47278/journal.abr/2024.012

Raut R, Maharjan P, Fouladkhah AC. (2023). Practical preventive considerations for reducing the public health burden of poultry-related salmonellosis. International Journal of Environmental Research and Public Health 20(17): 6654. https://doi.org/10.3390/ijerph20176654

Renu S, Markazi AD, Dhakal S, Lakshmanappa YS, Gourapura SR, Shanmugasundaram R, Senapati S, Narasimhan B, Selvaraj RK, Renukaradhya GJ. (2018). Surface engineered polyanhydride-based oral Salmonella subunit nanovaccine for poultry. International Journal of Nanomedicine 13: 8195-8215. https://doi.org/10.2147/IJN.S185588

Roland KL, Kong Q, Jiang Y. (2020). Attenuated Salmonella for oral immunization. In: Kiyono H, Pascual DW, editors, Mucosal Vaccines. Academic Press, Elsevier. Pp. 383-399 https://doi.org/10.1016/B978-0-12-811924-2.00022-5

Ruvalcaba-Gómez JM, Villagrán Z, Valdez-Alarcón JJ, Martínez-Núñez M, Gomez-Godínez LJ, Ruesga-Gutiérrez E, Anaya-Esparza LM, Arteaga-Garibay RI, Villarruel-López A. (2022). Non-antibiotics strategies to control Salmonella infection in poultry. Animals 12(1): 102. https://doi.org/10.3390/ani12010102

Sachdeva A, Tomar T, Malik T, Bains A, Karnwal A. (2025). Exploring probiotics as a sustainable alternative to antimicrobial growth promoters: mechanisms and benefits in animal health. Frontiers in Sustainable Food Systems 8: 1523678. https://doi.org/10.3389/fsufs.2024.1523678

Saleem M, Rahman HU, Abbas J. (2023). Rapid recovery of Salmonella from chicken meat and poultry fecal samples by selective pre-enrichment. Continental Veterinary Journal 3(1): 49-53. http://dx.doi.org/10.71081/cvj/2023.007

Sayed F, Kaur R, Jha V, Quraishi UA. (2024). Prevalence, Antibiotic Resistance, and Implications for Public Health Due to Salmonella Contamination in Food Products. South Asian Journal of Research in Microbiology 18(5): 18-29. https://doi.org/10.9734/sajrm/2024/v18i5359

Sears KT, Galen JE, Tennant SM. (2021). Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans. Journal of Applied Microbiology 131(6): 2640-2658. https://doi.org/10.1111/jam.15055

Senevirathne A, Hewawaduge C, Park S, Park JY, Kirthika P, Lee JH. (2020). O-antigen-deficient, live, attenuated Salmonella typhimurium confers efficient uptake, reduced cytotoxicity, and rapid clearance in chicken macrophages and lymphoid organs and induces significantly high protective immune responses that protect chickens against Salmonella infection. Developmental & Comparative Immunology 111: 103745. https://doi.org/10.1016/j.dci.2020.103745

Shekhar C, Singh SP. (2015). Molecular characterization of Salmonella serovars of zoonotic importance. The Indian Journal of Animal Sciences 85(2): 113-116. https://doi.org/10.56093/ijans.v85i2.46559

Shin H, La TM, Lee HJ, Kim T, Song SU, Park E, Park GH, Choi IS, Park SY, Lee JB. (2022). Evaluation of immune responses and protective efficacy of a novel live attenuated Salmonella enteritidis vaccine candidate in chickens. Vaccines 10(9): 1405. https://doi.org/10.3390/vaccines10091405

Siddique A, Wang Z, Zhou H, Huang L, Jia C, Wang B, Ed-Dra A, Teng L, Li Y, Yue M. (2024a). The evolution of vaccines development across Salmonella serovars among animal hosts: A systematic review. Vaccines 12(9): 1067. https://doi.org/10.3390/vaccines12091067

Siddiqui AA, Abbas A, Zaman H, Rehman A, Kashif M, Ahmad T, Nadeem M. (2024b). Continental Veterinary Journal. 4(2): 146-151. http://dx.doi.org/10.71081/cvj/2024.028

Smith RP, May HE, Burow E, Meester M, Tobias TJ , Sassu EL, Pavoni E, Di Bartolo I Prigge C, Wasyl D. (2023). Assessing pig farm biosecurity measures for the control of Salmonella on European farms. Epidemiology and Infection 151: e130. https://doi.org/10.1017/S0950268823001115

Solfaine R, Purnama MTE, Maslamama ST, Fikri F, Hamid IS. (2024). Bdellovibrio bacteriovorus: a boost for hematological and gut health in Salmonella enteritidis-infected mice. International Journal of Veterinary Science 13(6): 776-781. https://doi.org/10.47278/journal.ijvs/2024.165

Stingelin GM, Scherer RS, Machado AC, Piva A, Grilli E, Penha Filho RC. (2023). The use of thymol, carvacrol and sorbic acid in microencapsules to control Salmonella Heidelberg, S. Minnesota and S. Typhimurium in broilers. Frontiers in Veterinary Science 9: 1046395. https://doi.org/10.3389/fvets.2022.1046395

Susalam MK, Harnentis H, Marlida Y, Jamsari J, Ardani LR. (2024). The effect of probiotics consortium isolated from fermented fish (Budu) on broiler performances and meat quality. International Journal of Veterinary Science 13(1): 100-107. https://doi.org/10.47278/journal.ijvs/2023.066

Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, Al Mutiri AS, Al-Alyani AM, Alseghayer MS, Almaneea AM. (2023). Human salmonellosis: a continuous global threat in the farm-to-fork food safety continuum. Foods 12(9): 1756. https://doi.org/10.3390/foods12091756

Thanki AM, Hooton S, Gigante AM, Atterbury RJ, Clokie MRJ. (2021). Potential roles for bacteriophages in reducing Salmonella from poultry and swine. In: Lamas A, Regal P, Franco CM, editors, Salmonella spp.-A Global Challenge. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.96984

Vt Nair D, Venkitanarayanan K, Kollanoor Johny A. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 7(10): 167. https://doi.org/10.3390/foods7100167

Walker RI, Bourgeois AL. (2023). Oral inactivated whole cell vaccine for mucosal immunization: ETVAX case study. Frontiers in Immunology 14: 1125102. https://doi.org/10.3389/fimmu.2023.1125102

Wang M, Qazi IH, Wang L, Zhou G, Han H. (2020). Salmonella virulence and immune escape. Microorganisms 8(3): 407. https://doi.org/10.3390/microorganisms8030407

Wibisono FM, Wibison FJ, Effendi MH, Plumeriastuti H, Hidayatullah AR, Hartadi EB, Sofiana ED. (2020). A review of salmonellosis on poultry farms: Public health importance. Systematic Reviews in Pharmacy 11(9): 481-486. http://repository.unair.ac.id/id/eprint/127145

Willis C, Jørgensen F, Cawthraw S, Aird H, Lai S, Kesby M, Chattaway M, Lock I, Quill E, Raykova G. (2023). A survey of Salmonella, Escherichia coli, and antimicrobial resistance in frozen, part-cooked, breaded, or battered chicken products on retail sale in the UK. Journal of Applied Microbiology 134(5): lxad093. https://doi.org/10.1093/jambio/lxad093

Won G, Lee JH. (2017). Salmonella Typhimurium, the major causative agent of foodborne illness inactivated by a phage lysis system provides effective protection against lethal challenge by induction of robust cell-mediated immune responses and activation of dendritic cells. Veterinary Research 48(1): 66. https://doi.org/10.1186/s13567-017-0474-x

Yero D, Conchillo-Solé O, Daura X. (2020). Antigen discovery in bacterial panproteomes. In: Pfeifer BA, Hill A, editors, Vaccine Delivery Technology: Methods and Protocols. Humana, New York. Pp. 43-62. https://doi.org/10.1007/978-1-0716-0795-4_5

Youssef DM, Wieland B, Knight GM, Lines J, Naylor NR. (2021). The effectiveness of biosecurity interventions in reducing the transmission of bacteria from livestock to humans at the farm level: A systematic literature review. Zoonoses and Public Health 68(6): 549-562. https://doi.org/10.1111/zph.12807

Zahedipour F, Zahedipour F, Zamani P, Jaafari MR, Sahebkar A. (2024). Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications. Virus Research 341: 199314. https://doi.org/10.1016/j.virusres.2024.199314

Zamora-Sanabria R, Alvarado AM. (2017). Preharvest Salmonella risk contamination and the control strategies. In: Mares M, editor, Current Topics in Salmonella and Salmonellosis IntecOpen, London, UK. http://dx.doi.org/10.5772/67399

Downloads

Published

30-10-2025

How to Cite

Hameed, A. S. ., Riaz, J., Rayshan, A. R., Al-Kinani, A. S. S., Al-Kinani, A. S. S., Younas, A., Alkhamessi, R. N. ., Kadham, M. J. ., Haris, M. M. ., Farooq, A. B., Ambrose, S., & Khan, A. M. A. (2025). Vaccination and non-antibiotic strategies for effective control of multidrug-resistant Salmonella bacteria of medical and veterinary importance. Letters In Animal Biology, 5(1), 89–99. https://doi.org/10.62310/liab.v5i1.255

Issue

Section

Review Articles
Recieved 2025-09-02
Accepted 2025-10-26
Published 2025-10-30

Most read articles by the same author(s)