Advancements of CRISPR/Cas9 technology and its value in antiviral therapeutics

CRISPR/Cas9 in antiviral therapeutics

Authors

  • Kapil Dev Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj – 211007, India
  • Jubeda Begum Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, GBPUAT, Pantnagar – 263145, India
  • Nasir Akbar Mir ICAR- Central Avian Research Institute, Bareilly – 243122, India https://orcid.org/0000-0003-0929-0713
  • Rajiv Kant Sam Higginbottom University of Agriculture, Technology And Sciences, Prayagraj – 211007, India

DOI:

https://doi.org/10.62310/liab.v1i1.60

Keywords:

CRISPR/Cas9, Antiviral therapy, Delivery, Immunogenicity, Off-target effects

Abstract

CISPR/Cas9 system is a natural immune mechanism adopted by bacteria and archaea on exposure to invading phages and plasmids. The field of genome editing has been revolutionized with the advent of CRISPR/Cas9 technology. The CRISPR/Cas9 based gene editing has offered a promising therapeutic platform for many animal and human diseases, particularly viral diseases because viruses evolve constantly and hence escape vaccine-induced immunity. The targeted genome editing by RNA-guided nucleases is rapid, easy, economical, and efficient compared to previous editing technologies. It not only helps in the direct destruction of viruses, but also helps us understand the host-virus interactions, gene functions, and develop recombinant vaccines. It has been widely experimented in the field of antiviral therapy, starting with HIV in 2013 to SARS CoV-2 recently, with a series of modifications in structure and composition of CRISPR/Cas9 and delivery mechanisms to achieve the ever-increasing promising results. Herein, this review focused on the origin of CRISPR/Cas9 system, mechanism of action, advantages over existing gene-editing tools, its progress in antiviral therapy, vaccine development, delivery approaches, and challenges faced in the application of CRISPR/Cas9.

Metrics

Metrics Loading ...

References

Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, Pande T, Endy D, La Russa MF, Lewis DB, Qi LS. (2020). Development of CRISPR as an antiviral strategy to combat SARS- CoV-2 and Influenza. Cell 181: 865-876.

Afkhami S, Yao Y, Xing Z. (2016). Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Molecular Therapy: Methods & Clinical Development 3:16030. https://doi.org/10.1038/mtm.2016.30

Ang J, Quake SR. (2014). RNA-guided endonuclease provides a therapeutic strategy to cure latent Herpesviridae infection. Proceedings of the National Academy of Sciences USA 111: 13157-13162.

Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature Medicine 19:1111-1113.

Barrangou R, Marraffini LA. (2014). CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Molecular Cell 54: 234-244. https://doi.org/10.1016/j.molcel.2014.03.011

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.

Bierle CJ, Anderholm KM, Wang JB, McVoy MA, Schleiss MR. (2016). Targeted mutagenesis of guinea pig cytomegalovirus using CRISPR/Cas9-mediated gene editing. Journal of Virology 90: 6989-6998.

Bublot MSJ. (2004). Vaccination against Marek’s disease. London: Academic Press; p. 168–85.

Chang P, Ameen F, Sealy JE, Sadeyen JR, Bhat S, Li Y, Iqbal M. (2019). Application of HDR-CRISPR/Cas9 and erythrocyte binding for rapid generation of recombinant turkey herpesvirus-vectored avian influenza virus vaccines. Vaccines 7:192. https://doi.org/10.3390/vaccines7040192

Chang P, Yao Y, Tang N, Sadeyen JR, Sealy J, Clements A, Bhat S, Munir M, Bryant JE, Iqbal M. (2018). The application of NHEJ-CRISPR/Cas9 and cre-lox system in the generation of bivalent duck enteritis virus vaccine against avian influenza virus. Viruses 10(2): 81. https://doi.org/10.3390/v10020081

Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine 25: 249-254.

Chen S, Lee B, Lee AYF, Modzelewski AJ, He L. (2016). Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. Journal of Biological Chemistry 291: 14457–14467.

Chena M, Maob A, Xua M, Wenga Q, Maoa J, Ji J. (2019). CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Letters 447: 48-55.

Chew WL, Tabebordbar M, Cheng JKW, Mali P, Wu EY, Ng AHM, Zhu K, Wagers AJ, Church GM. (2016). A multi-functional AAV-CRISPR-Cas9 and its host response. Nature Methods 13(10): 868-874.

Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Gruner BM, Chuang CH, Caswell DR, Zeng H, Chu P, Kim GE, Carpizo DR, Kim SK, Winslow MW. (2015). Pancreatic cancer modelling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes & Development 29: 1576-1585.

Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research 24: 132-141.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823.

Cradick TJ, Fine EJ, Bao G, et al. CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 2013;41:9584–9592.

Cronenberg AM, van Geffen CE, Dorrestein J, Vermeulen AN, Sondermeijer PJ. (1999). Vaccination of broilers with hvt expressing an eimeria acervulina antigen improves performance after challenge with eimeria. Acta Virology 43: 192-197.

Doudna JA, Charpentier E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096. https://doi.org/10.1126/science.1258096

Duan J, Lu G, Xie Z, Lou M, Luo J, Guo L, Zhang Y. (2014). Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Research 24: 1009-1012.

Ebina H, Misawa N, Kanemura Y, Koyanagi Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific Reports 3: 2510. https://doi.org/10.1038/srep02510

Ehrke-Schulz E, Schiwon M, Leitner T, David S, Bergmann T, Liu J, Ehrhardt A. (2017). CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Scientific Reports 7: 17113. https://doi.org/10.1038/s41598-017-17180-w

Finn JD, Smith AR, Morrissey DV. (2018). A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Reports 22: 2227-2235.

Fornaguera C, Dols-Perez A, Caldero G, Garcia-Celma MJ, Camarasa J, Solans C. (2015). PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier. Journal of Control Release 211: 134-143.

Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology 32: 279-284.

Gaj T, Gersbach CA, Barbas III CF. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31(7): 397–405.

Gasiunas G, Barrangou R, Horvath P, Siksnys V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Science USA 109: E2579-E2586.

Gergen J, Coulon F, Creneguy A, Elain-Duret N, Gutierrez A, Pinkenburg O, Verhoeyen E, Anegon I, Nguyen TH, Halary FA, Haspot Fabienne. (2018). Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE 13: e0192602. https://doi.org/10.1371/journal.pone.0192602

Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. (2014). Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159: 647–661.

Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. (2018). Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics. The AAPS Journal 20: 108. https://doi.org/10.1208/s12248-018-0267-9

Hagag IT, Wight DJ, Bartsch D, Sid H, Jordan I, Bertzbach LD, Schusser B, Kaufer BB. (2020). Abrogation of Marek’s disease virus replication using CRISPR/Cas9. Scientific Reports 10: 10919. https://doi.org/10.1038/s41598-020-67951-1

Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH. (2015). Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nature Biotechnology 9: 985-989.

Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh Masahiro, Abe Y, Hatada I. (2014). Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Scientific Reports 28(4): 4513. https://doi.org/10.1038/srep04513

Hsu PD, Lander ES, Zhang F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 1262-1278.

Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J, Mo X, Khalili K. (2014). RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proceedings of the National Academy of Science USA 111: 11461-11466.

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429-5433.

Jager L, Ehrhardt A. (2009). Persistence of high-capacity adenoviral vectors as replication-defective monomeric genomes in vitro and in murine liver. Human Gene Therapy 20: 883-896.

Jiang F, Doudna JA. (2017). CRISPR-Cas9 structures and mechanisms, Annual Reviews in Biophysics 46: 505-529.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier EA. (2012). Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.

Jo Y‐I, Kim H, Ramakrishna S. (2015). Recent developments and clinical studies utilizing engineered zinc finger nuclease technology. Cellular and Molecular Life Sciences 72(20): 3819-3830.

Kaminski R, Chen Y, Salkind J, Bella R, Young WB, Ferrante P, Karn J, Malcolm T, Hu W, Khalili K. (2016). Negative feedback regulation of HIV-1 by gene editing strategy. Scientific Reports 6: 31527. https://doi.org/10.1038/srep31527

Kelley ML, Strezoska Z, van Brabant Smith A, et al. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J Biotechnol 2016;233:74–83. [PubMed: 27374403]

Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR. (2014). Inactivation of the human papilloma- virus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. Journal of Virology 88: 11965-11972.

Kennedy EM, Kornepati AV, Cullen BR. (2015). Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Antiviral Research 123: 188-192.

Khadempar S, Familghadakchi S, Motlagh RA, Farahani N, Dashtiahangar M, Rezaei H, Hayat SMG. (2019). CRISPR–Cas9 in genome editing: Its function and medical applications. Journal of Cellular Physiology 234: 5751-5761.

Khalili K, White MK, Jacobson JM. (2017). Novel AIDS therapies based on gene editing. Cellular and Molecular Life Science 74: 2439-2450.

Kim H, Kim JS. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15: 321-334.

Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim JS. (2013). A library of TAL effector nucleases spanning the human genome. Nature Biotechnology 31: 251-258.

Kim S, Koo T, Jee HG, Cho HY, Lee G, Lim DG, Shin HS, Kim JS. (2018). CRISPR RNAs trigger innate immune responses in human cells. Genome Research 28: 367-373.

Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. (2015). Genome- scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517: 583-588.

Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin, Muzyczka N, Roochi M, Berns KI. (1990). Site-specific integration by adeno-associated virus. Proceedings of the National Academy of Science USA 87: 2211-2215.

Lander ES. (2016). The heroes of CRISPR. Cell 164(1‐2): 18-28.

Lebbink, R. J., de Jong, D. C., Wolters, F., Kruse, E. M., van Ham, P. M., Wiertz, E. J., et al. (2017). A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci. Rep. 7:41968. doi: 10.1038/srep41968.

Li L, He ZY, Wei XW, Gao GP, Wei YQ. (2015). Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Human Gene Therapy 26: 452-462.

Li L, Song L, Song L, Liu X, Yang X, Li X, He T, Wang N, Yang S, Yu C, Yin T, Wen T, He Z, Wei X, Su W, Wu Q, Yao S, Gong C. (2016). Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 11: 95-111.

Li Y, Reddy K, Reid SM, Cox WJ, Brown IH, Britton P, Nair V, Iqbal M. (2011). Recombinant herpesvirus of turkeys as a vector-based vaccine against highly pathogenic h7n1 avian influenza and Marek’s disease. Vaccine 29: 8257-8266.

Liang C, Li F, Wang L, Zhang ZK, Wang C, He B, Li J, Chen Z, Shaikh AB, Liu J, Wu X, Peng S, Dang L, Guo B, He X, Au DWT, Lu C, Zhu H, Zhang BT, Lu A, Zhang G. (2017). Tumour cell-targeted delivery of CRISPR/Cas9 by aptamer- functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials 147: 68-85.

Liang X, Sun L, Yu T, Pan Y, Wang D, Hu X, Fu Z, He Q, Cao G. (2016). A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging pseudorabies virus. Scientific Reports 6: 19176. https://doi.org/10.1038/srep19176

Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. (2014). The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Molecular Therapy - Nucleic Acids 3(8): e186. https://doi.org/10.1038/mtna.2014.38

Liu Y, Xu Z, Zhang Y, Yu M, Wang S, Gao Y, Qi X, Cui H, Pan Q, Li K, Wang X. (2020). Marek’s disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Veterinary Microbiology 242: 108589. https://doi.org/10.1016/j.vetmic.2020.108589

Long C, McAnally JR, Olson EN (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9– mediated editing of germline DNA. Science 345: 1184-1188.

Luther DC, Lee YW, Nagaraj H, Scaletti F, Rotello VM. (2018). Delivery Approaches for CRISPR/Cas9 Therapeutics In Vivo: Advances and Challenges. Expert Opinions in Drug Delivery 15(9): 905-913.

Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. (2013). RNA-guided human genome engineering via cas9. Science 339: 823-826.

Mehta A, Merkel OM. (2020). Immunogenicity of Cas9 protein. Journal of Pharmaceutical Sciences 109: 62-67.

Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ. (2017). Non‐viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co‐delivery of Cas9 mRNA and sgRNA. Angewandte Chemie International Edition 56: 1059-1063.

Mout R, Ray M, Tonga GY, Lee YW, Tay T, Sasaki K, Rotello VM. (2017). Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11: 2452-2458.

Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S. (2013). Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nature Communications 4: 1707. https://doi.org/10.1038/ncomms2717

Nelles DA, Fang MY, O;Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW. (2016). Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165: 488-496.

Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935-949.

Ok CY, Li L, Young KH. (2015). EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Experimental & Molecular Medicine 47: e132. https://doi.org/10.1038/emm.2014.82

Paix A, Folkmann A, Rasoloson D, Seydoux G. (2015). High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201: 47- 54.

Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA. (2014). CRISPR-Cas9 knock-in mice for genome editing and cancer modeling. Cell 159: 440-455.

Puschnik AS, Majzoub K, Ooi YS, Carette JE. (2017). A CRISPR toolbox to study virus-host interactions. Natture Reviews Microbiology 15: 351-364.

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. (2015). In vivo Genome Editing using Staphylococcus Aureus Cas9. Nature 520: 186-191.

Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. (2013). Double nicking by rna-guided crispr cas9 for enhanced genome editing specificity. Cell 154: 1380–1389.

Ren LZ, Peng ZY, Ouyang T, Liu XH, Chen XR, Ye L, Fan JW, Ouyang HS, Pang DX, Bai JY. (2018). Sub-culturing cells have no effect on CRISPR/Cas9-mediated cleavage of UL30 gene in pseudorabies virus. Animal Models and Experimental Medicine 1(1): 74-77.

Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, Khalili K. (2016). Inhibition of HSV-1 Replication by Gene Editing Strategy. Scientific Reports 6: 23146. https://doi.org/10.1038/srep23146

Sander JD, Joung JK. (2014). CRISPR-Cas systems for genome editing, regulation and targeting. Nature Biotechnology 32: 347-355.

Sarkis C, Philippe S, Mallet J, Serguera C. (2008). Non-integrating lentiviral vectors. Current Gene Therapy 8: 430-437.

Scharenberg M, Duchateau A, Smith J. (2013). Genome engineering with TAL‐effector nucleases and alternative modular nuclease technologies. Current Gene Therapy 13(4): 291-303.

Schmidt F, Grimm D. (2015). CRISPR genome engineering and viral gene delivery: a case of mutual attraction. Biotechnology Journal 10: 258-272.

Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, Haliburton GE, Ye CJ, Bluestone JA, Doudna JA, Marson A. (2015). Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Science USA 112: 10437-10442.

Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, Zhang F. (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365: 48. https://doi.org/10.1126/science.aax9181

Suenaga T, Kohyama M, Hirayasu K, Arase H. (2014). Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiology and Immunology 58: 513-522.

Tabebordbar M, Zhu K, Cheng JKW, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao Ru, Ran FA, Cong Le, Zhang F, Vandenberghe LH, Church GM, Wagers JA. (2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351: 407-411.

Tang YD, Liu JT, Wang TY, Sun MX, Tian ZJ, Cai XH. (2017). CRISPR/Cas9-mediated multiple single guide RNAs potently abrogate pseudorabies virus replication. Archives of Virology 162: 3881-3886.

Tang N, Zhang Y, Pedrera M, Chang P, Baigent S, Moffat K, Shen Z, Nair V, Yao Y. (2018). A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine 36: 716-722.

Taylor GS, Long HM, Brooks JM, Rickinson AB, Hislop AD. (2015). The immunology of Epstein-Barr virus-induced disease, Annual Reviews in Immunology 33: 787-821.

Teng M, Yao Y, Nair V, Luo J. (2021). Latest advances of virology research using CRISPR/Cas9 based gene-editing technology and its application to vaccine development. Viruses 13: 779. https://doi.org/10.3390/v13050779

Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology 32: 569-576.

Tsukamoto K, Saito S, Saeki S, Sato T, Tanimura N, Isobe T, Mase M, Imada T, Yuasa N, Yamaguchi S. (2002). Complete, long-lasting protection against lethal infectious bursal disease virus challenge by a single vaccination with an avian herpesvirus vector expressing vp2 antigens. Journal of Virology 76: 5637–5645.

Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, Bode NM, McNeill MS, Yan S, Camarena J, Lee CM, Park SH, Wiebking V, Bak RO, Gomez-Ospina N, Pavel-Dinu M, Sun W, Bao G, Porteus MH, Behlke MA. (2018). A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nature Medicine 24: 1216-1224.

Van Diemen FR, Kruse EM, Hooykaas MJG, Bruggeling CE, Schurch AC, Van Ham PM, Imhof SM, Nijhuis M, Wiertz EJHJ, Lebbink RJ. (2016). CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathogens 12: e1005701. https://doi.org/10.1371/journal.ppat.1005701

Van Diemen FR, Lebbink RJ. (2017). CRISPR/Cas9, a powerful tool to target human herpesviruses. Cellular Microbiology 19(2): e12694. https://doi.org/10.1111/cmi.12694

Vilela J, Rohaim MA, Munir M. (2020). Application of CRISPR/Cas9 in understanding avian viruses and developing poultry vaccines. Frontiers in Cellular and Infection Microbiology 10: 581504. https://doi.org/10.3389/fcimb.2020.581504

Wang D, Haiwei M, Li S, Li Y, Hough S, Tran K, Li J, Yin H, Anderson DG, Sontheimer EJ, Weng Z, Gao G, Xue W. (2015). Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Human Gene Therapy 26: 432-442.

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. (2013). One-step generation of mice carrying mutations in multiple genes by crispr/cas-mediated genome engineering. Cell 153: 910-918.

Wang G, Zhao N, Berkhout B, Das AT. (2018). CRISPR- Cas based antiviral strategies against HIV-1. Virus Research 244: 321-332.

Wang J, Xu ZW, Liu S, Zhang RY, Ding SL, Xie XM, Long L, Chen XM, Zhuang H, Lu FM. (2015). Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World Journal of Gastroenterology 21: 9554-9565.

Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. (2014). CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9: e115987. https://doi.org/10.1371/journal.pone.0115987

Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R. (2013). TALEN or Cas9—rapid, efficient and specific choices for genome modifications. Journal of Genetics and Genomics 40: 281-289.

Wold WS, Toth K. (2013). Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Current Gene Therapy 13: 421-433. https://doi.org/10.2174/1566523213666131125095046

Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. (2015). CRISPR-Cas9: a new and promising player in gene therapy. Journal of Medical Genetics 52: 289-296.

Xiao J, Deng J, Zhang Q, Ma P, Lv L, Zhang Y, Li C, Zhang Y. (2020). Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation. Archives of Virology 165: 1827-1835.

Xiao Q, Guo D, Chen S. (2019). Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Frontiers in Cellular and Infection Microbiology 9: 69. https://doi.org/10.3389/fcimb.2019.00069

Xu A, Qin C, Lang Y, Wang M, Lin M, Li C, Zhang R, Tang J. (2015). A simple and rapid approach to manipulate pseudorabies virus genome by crispr/cas9 system. Biotechnology letters 37: 1265-1272.

Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. (2013). One-step generation of mice carrying reporter and conditional alleles by crispr/cas-mediated genome engineering. Cell 154: 1370-1379.

Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K, Mou H, Oberholzer A, Ding J, Kwan SY, Bogorad RL, Zatsepin T, Koteliansky V, Wolfe SA, Xue W, Langer R, Anderson DG. (2017). Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nature Biotechnology 35: 1179-1187.

Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A, Bolukbasi MF, Walsh S, Bogorad RL, Gao G, Weng Z, Dong Y, Koteliansky V, Wolfe SA, Langer R, Xue W, Anderson DG. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology 34: 328-333.

Yuan M, Gao X, Chard LS, Ali Z, Ahmed J, Li Y, Liu P, Lemoine NR, Wang Y. (2015). A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9. Molecular Therapy: Methods & Clinical Development 2: 15035. https://doi.org/10.1038/mtm.2015.35

Yuen KS, Chan CP, Kok KH, Jin NY. (2017). Mutagenesis and genome engineering of Epstein–barr virus in cultured human cells by CRISPR/Cas9. Methods in Molecular Biology 1498: 23-31.

Yuen KS, Wang ZM, Wong NHM, Zhang ZQ, Cheng TF, Lui WY, Chan CP, Jin DY. (2018). Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9. Virus Research 244: 296-303.

Zetsche B, Volz SE, Zhang F. (2015). A split-Cas9 architecture for inducible genome editing and transcription modulation. Nature Biotechnology 33: 139-142.

Zhang Y, Tang N, Sadigh Y, Baigent S, Shen Z, Nair V, Yao Y. (2018). Application of CRISPR/Cas9 gene editing system on MDV-1 genome for the study of gene function. Viruses 10: 279. https://doi.org/10.3390/v10060279

Zhang Y, Wang Y, Zuo Q, Li D, Zhang W, Wang F, Ji Y, Jin J, Lu Z, Wang M, Zhang C, Li B. (2017). Crispr/cas9 mediated chicken stra8 gene knockout and inhibition of male germ cell differentiation. PloS One 12: e0172207. https://doi.org/10.1371/journal.pone.0172207

Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. (2015). Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Therapy 22: 404-412.

Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. (2014). In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/ Cas9. Biochemical and Biophysical Research Communications 450: 1422-1426.

Zou Z, Huang K, Wei Y, Chen H, Liu Z, Jin M. (2017). Construction of a highly efficient crispr/cas9-mediated duck enteritis virus-based vaccine against h5n1 avian influenza virus and duck tembusu virus infection. Scientific Reports 7: 1478. https://doi.org/10.1038/s41598-017-01554-1

Downloads

Published

26-09-2021

How to Cite

Dev, K., Begum, J., Mir, N. A., & Kant, R. (2021). Advancements of CRISPR/Cas9 technology and its value in antiviral therapeutics: CRISPR/Cas9 in antiviral therapeutics. Letters In Animal Biology, 1(1), 46–57. https://doi.org/10.62310/liab.v1i1.60

Issue

Section

Review Articles
Recieved 2021-08-20
Accepted 2021-09-25
Published 2021-09-26

Most read articles by the same author(s)