Molecular mechanisms of biofilm resistance against antibiotics

Biofilm antibiotic resistance

Authors

  • Jubeda Begum Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, GBPUAT, Pantnagar, India
  • Nasir Akbar Mir Department of Animal Husbandry Kashmir, Jammu & Kashmir, India

DOI:

https://doi.org/10.62310/liab.v3i1.107

Keywords:

Biofilm, Quorum sensing, Antibiotic resistance, Extracellular DNA, Mutations, Pseudomonas aeruginosa

Abstract

Biofilms are immobile communities of microbes attached to biotic an abiotic surfaces and are embedded inside a self-produced cement-like extracellular polymeric substances. The resistance of biofilms against commonly used drugs has been implicated in the pathogenesis of various bacterial infections under medical and veterinary settings which normally cannot be eradicated by antibiotics. Biofilms are characterized by the ability to evade not only the antibiotic effects but also the host immune system clearance. Currently the most worrisome aspect of global human health is the rise and spread of antimicrobial resistance in bacterial pathogens and this crisis got deepened by the emergence of antimicrobial resistance of bacterial biofilms. Different antibiotic resistance mechanisms, processes by which a target pathogen curtails the interaction between an antimicrobial agent and its intended target molecules, adopted by biofilms have been discussed in this review. Different antibiotic resistance mechanisms are employed by the biofilms depending on the species of the bacteria, growth conditions, and the antibiotic involved. Commonly, the role of biofilm matrix polysaccharides, antibiotic-modifying or degrading enzymes, extracellular DNA, hypoxic conditions, presence of efflux pumps, quorum sensing, horizontal gene transfer, mutation frequency, etc. have been implicated in antibiotic resistance of biofilms. This review also discusses different approaches of overcoming biofilm infections or biofilm resistance. However, it is pertinent to mention that since no new class of antibiotics have been approved in last four decades there is the need of greater understanding of biofilm-associated antibiotic resistance to effectively utilise the therapeutic value of the existing antibiotics. Although a number of anti-biofilm strategies have been put forward as discussed in this review, they are still in nascent stage and need to undergo clinical trials to reach the commercial market.

Metrics

Metrics Loading ...

References

Abebe GM. (2020). The role of bacterial biofilm in antibiotic resistance and food contamination. International Journal of Microbiology. 2020 (1705814). https://doi.org/10.1155/2020/1705814

Alav I, Sutton JM, Rahman KM. (2018). Role of bacterial efflux pumps in biofilm formation. Journal of Antimicrobial Chemotherapy 73(8): 2003-2020.

Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen PO, Nielsen AK, Parsek M, Wozniak D, Molin S, Tolker-Nielsen T, Høiby N, Givskov M, Bjarnsholt T. (2011). Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6(11): e27943. https://doi.org/10.1371/journal.pone.0027943

Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T. (2006). A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology 59: 1114-1128.

Amini S, Hottes AK, Smith LE, Tavazoie S. (2011). Fitness landscape of antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Pathogens 7(10): e1002298. https://doi.org/10.1371/journal.ppat.1002298

Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance 11: 1645-1658.

Bae J, Oh E, Jeon B. (2014). Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrobial Agents and Chemotherapy 58: 7573-7575.

Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Hoiby N. (2004). Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy 48(4): 1168-1174.

Balcazar JL, Subirats J, Borrego CM. (2015). The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in Microbiology 6: 1216. https://doi.org/10.3389/fmicb.2015.01216

Begum J, Mir NA, Dev K, Khan IA. (2018). Dynamics of antibiotic resistance with special reference to Shiga toxin-producing Escherichia coli infections. Journal of Applied Microbiology 125: 1228-1237.

Beloin C, Ghigo JM. (2005). Finding gene-expression patterns in bacterial biofilms. Trends in Microbiology 13(1): 16-19.

Bhardwaj AK, Vinothkumar K, Rajpara N. (2013). Bacterial quorum sensing inhibitors: Attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Patents on Anti-Infective Drug Discovery 8(1): 68-83.

Billings N, Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, Ribbeck K. (2013). The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathogens 9(8): e1003526. https://doi.org/10.1371/journal.ppat.1003526

Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Hoiby N. (2005). Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 15: 3873-3880.

Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology 13(1): 42-51.

Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. (2016). Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 4(1): 14. https://doi.org/10.3390/microorganisms4010014

Boles BR, Singh PK. (2008). Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proceedings of National Academy of Science USA 105: 12503-12508.

Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. (2004). Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrobial Agents and Chemotherapy 48: 2659-2664.

Boudjemaa R, Briandet R, Revest M, Jacqueline C, Caillon J, Fontaine-Aupart MP, Steenkeste K. (2016). New insight into daptomycin bioavailability and localization in S. aureus biofilms by dynamic fluorescence imaging. Antimicrobial Agents and Chemotherapy 60: 4983-4990.

Bowler PG, Welsby S, Towers V, Booth R, Hogarth A, Rowlands V, Joseph A, Jones SA. (2012). Multidrug-resistant organisms, wounds and topical antimicrobial protection. International Wound Journal 9: 387-396.

Bowler PG. (2018). Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. Journal of Wound Care 27(5): 273-277.

Brackman G, Coenye T. (2014). Quorum sensing inhibitors as anti-biofilm agents. Current Pharmaceutical Design 21(1): 5-11.

Brooun A, Liu S, Lewis K. (2000). A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy 44: 640-646.

Buroni S, Matthijs N, Spadaro F, Van Acker H, Scoffone VC, Pasca MR, Riccardi G, Coenye T. (2014). Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic

Burkholderia cenocepacia cells. Antimicrobial Agents and Chemotherapy 58(12): 7424-7429.

Cepas V, Lopez Y, Munoz E, Rolo D, Ardanuy C, Martí S, Xercavins M, Horcajada JP, Bosch J, Soto SM. (2019). Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microbial Drug Resistance 25(1): 72-79.

Chiang WC, Nilsson M, Jensen PO, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T. (2013). Shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy 57(5): 2352-2361.

Chua SL, Yam JK, Hao P, Adav SS, Salido MM, Liu Y, Givskov M, Sze SK, Tolker-Nielsen T, Yang L. (2016). Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nature Communications 7: 10750. https://doi.org/10.1038/ncomms10750

Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathogens 7(1): e1001264. https://doi.org/10.1371/journal.ppat.1001264

Cook LC, Dunny GM. (2013). Effects of biofilm growth on plasmid copy number and expression of antibiotic resistance genes in Enterococcus faecalis. Antimicrobial Agents and Chemotherapy 57: 1850-1856.

Costerton JW, Montanaro L, Arciola CR. (2005). Biofilm in implant infections: its production and regulation. The International Journal of Artificial Organs 28(11): 1062-1068.

Cox G, Wright GD. (2013). Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology 303: 287-292.

Dale JL, Cagnazzo J, Phan CQ, Barnes AM, Dunny GM. (2015). Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer. Antimicrobial Agents and Chemotherapy 59: 4094-4105.

de Jonge E, de Boer MGJ, van Essen HER, Dogterom-Ballering HCM, Veldkamp KE. (2019). Effects of a disinfection device on colonisation of sink drains and patients during a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit. Journal of Hospital Infection 102: 70-74.

de Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG. (2001). Multidrug efflux pumps: expression patterns and contribution to antibiotic resis- tance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy 45: 1761-1770.

de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE. (2013). Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology 16(5): 580-589.

Dincer S, Uslu FM, Delik A. (2020). Antibiotic resistance in biofilm. In: Dincer S, Ozdenefe MS, Arkut A, editors. Bacterial biofilms. Intechopen, London, UK. http://dx.doi.org/10.5772/intechopen.92388

Doroshenko N, Tseng BS, Howlin RP, Deacon J, Wharton JA, Thurner PJ, Gilmore BF, Parsek MR, Stoodley P. (2014). Extracellular DNA im- pedes the transport of vancomycin in Staphylococcus epidermidis biofilms pre-exposed to subinhibitory concentrations of vancomycin. Antimicrobial Agents and Chemotherapy 58: 7273-7282.

Driffield K, Miller K, Bostock JM, O'Neill AJ, Chopra I. (2008). Increased mutability of Pseudomonas aeruginosa in biofilms. Journal of Antimicrobial Chemotherapy 61: 1053-1056.

Dufour D, Leung V, Levesque CM. (2012). Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics 22(1): 2-16.

Flemming HC, Wingender J, Szewwzyk U, Steinberg P, Rice SA, Kjelleberg S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 14(9): 563-575.

Flemming HC, Wuertz S. (2019). Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology 17: 247-60.

Fux CA, Costerton JW, Stewart PS, Stoodley P. (2005). Survival strategies of infectious biofilms. Trends in Microbiology 13: 34-40.

Garvey MI, Wilkinson MAC, Holden KL, Martin T, Parkes J, Holden E. (2019). Tap out: reducing waterborne Pseudomonas aeruginosa transmission in an intensive care unit. Journal of Hospital Infection 102: 75-81.

Gillis RJ, White KG, Choi KH, Wagner VE, Schweizer HP, Iglewski BH. (2012). Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy 158: 2975-2986.

Haaber J, Cohn MT, Frees D, Andersen TJ, Ingmer H. (2012). Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS One 7(7): e41075. https://doi.org/10.1371/journal.pone.0041075

Hall CW, Mah TF. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews 41: 276-301.

Hawkey PM. (2015). Multi-drug resistant Gram-negative bacteria: a product of globalization. Journal of Hospital Infection 89: 241-247.

Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, Wilbur DJ, Hreha TN, Barquera B, Rahme LG. (2016). Auto poisoning of the res- piratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Current Biology 26: 195-206.

Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. (2011). Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. Journal of Bacteriology 193: 5616-5622.

Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436: 1171-1175.

Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 35: 322-332.

Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen Po, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. (2011). The clinical impact of bacterial biofilms. International Journal of Oral Science 3(2): 55-65.

Ito A, Taniuchi A, May T, Kawata K, Okabe S. (2009). Increased antibiotic resistance of Escherichia coli in mature biofilms. Applied and Environmental Microbiology 75(12): 4093-4100.

Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. (2013). Life after death: the critical role of extracellular DNA in microbial biofilms. Letters in Applied Microbiology 57: 467-475.

Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil M. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association. 81(1): 7-11. https://doi.org/10.1016/j.jcma.2017.07.012

Jefferson KK, Goldmann DA, Pier GB. (2005). Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrobial Agents and Chemotherapy 49: 2467-2473.

Johnson L, Horsman SR, Charron-Mazenod L, Turnbull AL, Mulcahy H, Surette MG, Lewenza S. (2013). Extra- cellular DNA-induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium. BMC Microbiology 13(13): 115. https://doi.org/10.1186/1471-2180-13-115

Johnson L, Mulcahy H, Kanevets U, Shi Y, Lewenza S. (2012). Surface-localized spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. Journal of Bacteriology 194(4): 813-826.

Jolivet-Gougeon A, Bonnaure- Mallet M. (2014). Biofilms as a mechanism of bacterial resistance. Drug Discovery Today: Technologies 11: 49-56.

Kalpana BJ, Aarthy S, Pandian SK. (2012). Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Applied Biochemistry and Biotechnology 167(6): 1778-1794.

Kaplan JB. (2011). Antibiotic-induced biofilm formation. International Journal of Artificial Organs 34: 737-751.

Kaur G, Balamurugan P, Vasudevan S, Jadav S, Princy SA. (2017). Antimicrobial and Antibiofilm potential of acyclic amines and diamines against multi-drug resistant Staphylococcus aureus. Frontiers in Microbiology 8: 1767. https://doi.org/10.3389/fmicb.2017.01767

Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O'Toole GA. (2010). Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. International Microbiology 13: 207-212.

Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4(12): e01067. https://doi.org/10.1016/j.heliyon.2018.e01067

Kolodkin-Gal I, Cao S, Chai L, Bottcher T, Kolter R, Clardy J, Losick R. (2012). A self- produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149: 684-692.

Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. (2010). D-amino acids trigger biofilm disassembly. Science 328(5978): 627-629.

Kostakioti M, Hadjifrangiskou M, Hultgren SJ. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post-antibiotic era. Cold Spring Harbor Perspectives in Medicine 3(4): a010306.

Krol JE, Nguyen HD, Rogers LM. Beyenal H, Krone SM, Top EM. (2011). Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Applied and Environmental Microbiology 77: 5079-5088.

Krol JE, Wojtowicz AJ, Rogers LM, Heuer H, Smalla K, Krone SM, Top EM. (2013). Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid 70: 110-119.

Lajhar SA, Brownlie J, Barlow R. (2018). Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia. BMC Microbiology 18: 41. https://doi.org/10.1186/s12866-018-1182-z

Lecuyer F, Bourassa JS, Gelinas M, Charron- Lamoureux V, Burrus V, Beauregard PB. (2018). Biofilm formation drives transfer of the conjugative element ICE Bs1 in Bacillus subtilis. mSphere 3(5): e00473-18. https://doi.org/10.1128/mSphere.00473-18

Lewis K. (2008). Multidrug tolerance of biofilms and persister cells. Current Topics in Microbiology and Immunology 322: 107-131.

Liao J, Schurr MJ, Sauer K. (2013). The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. Journal of Bacteriology 195: 3352-3363.

Lonn-Stensrud J, Landin MA, Benneche T, Petersen FC, Scheie AA. (2009). Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections. Journal of Antimicrobial Chemotherapy 63: 309-316.

Lopez D, Vlamakis H, Kolter R. (2010). Biofilms. Cold Spring Harbor Perspectives in Biology 2(7): a000398. https://doi.org/10.1101/cshperspect.a000398

Madsen JS, Burmølle M, Hansen HL, Sørensen SJ. (2012). The interconnection between biofilms formation and horizontal gene transfer. FEMS Immunology and Medical Microbiology 65: 183-195.

Mah TF. (2012). Biofilm-specific antibiotic resistance. Future Microbiology 7: 1061-1072.

Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE, Hoiby N. (2009). Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrobial Agents and Chemotherapy 53: 2483-2491.

Mangwani N, Kumari S, Das S. (2016). Bacterial biofilms and quorum sensing: Fidelity in bioremediation technology. Biotechnology and Genetic Engineering Reviews 32(1-2): 43-73.

Marks LR, Reddinger RM, Hakansson AP. (2012). High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 3(5): e00200–12. https://doi.org/10.1128/mBio.00200-12

Matsumura K, Furukawa S, Ogihara H, Morinaga Y. (2011). Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Science 16(2): 69-72.

Matz C. (2011). Competition, communication, cooperation: molecular crosstalk in multi-species biofilms. In: Flemming HC, Wingender J, Szewzyk U, Editors, Biofilm Highlights: Springer Series on Biofilms. Springer, Berlin, Germany, pp. 29-40.

Maunders E, Welch M. (2017). Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiology Letters 364(13): fnx120. https://doi.org/10.1093/femsle/fnx120

McCarty SM, Cochrane CA, Clegg PD, Percival SL. (2012). The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regeneration 20: 125-136.

McPhee JB, Bains M, Winsor G, Lewenza S, Kwasnicka A, Brazas MD, Brinkman FS, Hancock RE. (2006). Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. Journal of Bacteriology 188: 3995-4006.

Monds RD, O’Toole GA. (2009). The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends in Microbiology 17: 73-87.

Mulcahy H, Charron-Mazenod L, Lewenza S. (2008). Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathogens 4(11): e1000213. https://doi.org/10.1371/journal.ppat.1000213

Munoz-Egea MC, Garcia-Pedrazuela M, Mahillo-Fernandez I, Esteban J. (2016). Effect of antibiotics and antibiofilm agents in the ultrastructure and development of biofilms developed by nonpigmented rapidly growing mycobacteria. Microbial Drug Resistance 22(1). https://doi.org/10.1089/mdr.2015.0124

Myszkaand K, Czaczy K. (2011). Bacterial biofilms on food contact surfaces – a review. Polish Journal of Food and Nutrition Sciences 61(3): 173-180.

Nadell CD, Drescher K, Wingreen NS, Bassler BL. (2015). Extracellular matrix structure governs invasion resistance in bacterial biofilms. The ISME Journal 9: 1700-1709.

Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR. (2015). Biofilm formation as a response to ecological competition. PLOS Biology 13(7): e1002191. https://doi.org/10.1371/journal.pbio.1002191

Oliver A, Canton R, Campo P, Baquero F, Blazquez J. (2000). High frequency of hyper- mutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251-1254.

Otto M. (2008). Staphylococcal biofilms. Current Topics in Microbiology and Immunology 322: 207-228.

Oxaran V, Dittmann KK, Lee SHI, Chaul LT, Fernandes de Oliveira CA, Corassin CH, Alves VF, De Martinis ECP, Gram L. (2018). Behavior of foodborne pathogens Listeria monocytogenes and Staphylococcus aureus in mixed-species biofilms exposed to biocides. Applied and Environmental Microbiology 84(24): e02038-18.

Petrova OE, Sauer K. (2012). Sticky situations: key components that control bacterial surface attachment. Journal of Bacteriology 194(10): 2413-2425.

Petrova OE, Sauer K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Current Opinion in Microbiology 30: 67-78.

Pinto RM, Soares FA, Reis S, Nunes C, Van Dijck P. (2020). Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms. Frontiers in Microbiology 11: 952. https://doi.org/10.3389/fmicb.2020.00952

Plusa T. (2019). The importance of biofilm in the context of increasing bacterial resistance to antibiotics. Polski Merkuriusz Lekarski 47(281): 197-202.

Poole K. (2011). Pseudomonas aeruginosa: resistance to the max. Frontiers in Microbiology 2: 65. https://doi.org/10.3389/fmicb.2011.00065

Popat R, Crusz SA, Messina M, Williams P, West SA, Diggle SP. (2012). Quorum-sensing and cheat- ing in bacterial biofilms. Proceedings. Biological Science 279: 4765-4771.

Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO. (2005). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151(5): 1325-1340.

Reg Bott T. (2011). Industrial biofouling. In: Biofilms in Industry. Elsevier Inc., Edgbaston, UK. pp. 181-201. https://doi.org/10.1016/B978-0-444-53224-4.10007-5

Ryder VJ, Chopra I, O’Neill AJ. (2012). Increased mutability of Staphylo- cocci in biofilms as a consequence of oxidative stress. PLoS One 7(10): e47695. https://doi.org/10.1371/journal.pone.0047695

Satpathy S, Sen SK, Pattanaik S, Raut S. (2016). Review on bacterial biofilm: an universal cause of contamination. Biocatalysis and Agricultural Biotechnology 7: 56-66.

Savage VJ, Chopra I, O’Neill AJ. (2013). Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrobial Agents and Chemotherapy 57: 1968-1970.

Schaible B, Taylor CT, Schaffer K. (2012). Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrobial Agents and Chemotherapy 56: 2114-2118.

Sharma D, Misba L, Khan AU. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control 8: 76. https://doi.org/10.1186/s13756-019-0533-3

Simonetti O, Cirioni O, Mocchegiani F, Cacciatore I, Silvestri C, Baldassarre L, Orlando F, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A, Offidani A. (2013). The efficacy of the quorum sensing inhibitor FS8 and tigecycline in preventing prosthesis biofilm in an animal model of staphylococcal infection. International Journal of Molecular Sciences 14(8): 16321-16332.

Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805): 762–764.

Singh R, Ray P, Das A, Sharma M. (2010). Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Antimicrobial Chemotherapy 65: 1955–1958.

Singh R, Sahore S, Kaur P, Rani A, Ray P. (2016). Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic- specific differences. Pathogens and Disease 74(6). https://doi.org/10.1093/femspd/ftw056

Sirijant N, Sermswan RW, Wongratanacheewin S. (2016). Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. Journal of Medical Microbiology 65: 1296–306.

Smolders D, Hendriks B, Rogiers P, Mul M, Gordts B. (2019). Acetic acid as a decontamination method for ICU sink drains colonized by carbapenemase-producing Enterobacteriaceae and its effect on CPE infections. Journal of Hospital Infection102: 82-88.

Song Z, Kong KF, Wu H, Maricic N, Ramalingam B, Priestap H, Schneper L, Quirke JME, Hoiby N, Mathee K. (2010). Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine 17: 1040-1046.

Southey-Pillig CJ, Davies DG, Sauer K. (2005). Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. Journal of Bacteriology 187: 8114-8126.

Stewart PS, Davison WM, Steenbergen JN. (2009). Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrobial Agents in Chemotherapy 53: 3505-3507.

Stewart PS, Franklin MJ. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology 6: 199-210.

Stewart PS, Zhang T, Xu R, Pitts B, Walters MC, Roe F, Kikhney J, Moter A. (2016). Reaction–diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. npj Biofilms Microbiomes 2(1): 16012. https://doi.org/10.1038/npjbiofilms.2016.12

Stewart PS. (2015). Antimicrobial tolerance in biofilms. Microbiology Spectrum 3(3). https://doi.org/10.1128/microbiolspec.MB-0010-2014

Stone G, Wood P, Dixon L, Keyhan M, Matin A. (2002). Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrobial Agents and Chemotherapy 46: 2458-2461.

Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, Zhou D. (2013). Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiology 8: 877-886.

Tetz GV, Artemenko NK, Tetz VV. (2009). Effect of DNase and antibiotics on biofilm characteristics. Antimicrobial Agents and Chemotherapy 53:1204–9.

Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, Singh PK, Chopp DL, Packman AI, Parsek MR. (2013). The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environmental Microbiology 15(10): 2865-2878.

van Meervenne E, De Weirdt R, Van Coillie E, Devlieghere F, Herman L, Boon N. (2014). Biofilm models for the food industry: hot spots for plasmid transfer? Pathogens and Disease 70(3): 332-338.

Wei H, Havarstein LS. (2012). Fratricide is essential for efficient gene transfer between pneumococci in biofilms. Applied and Environmental Microbiology 78: 5897-5905.

Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS. (2004). Stratified growth in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology 70: 6188-6196.

Wilton M, Charron-Mazenod L, Moore R, Lewenza S. (2016). Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 60(1): 544-553.

Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS, Dowd SE. (2010). Biofilm maturity studies indicate sharp debridement opens a time dependent therapeutic window. Journal of Wound Care 19(8): 320-328.

Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. (2004). Quorum sensing in Staphylococcus aureus biofilms. Journal of Bacteriology 186: 1838-1850.

Yonezawa H, Osaki T, Hanawa T, Kurata S, Ochiai K, Kamiya S. (2013). Impact of Helicobacter pylori biofilm formation on clarithromycin susceptibility and generation of resistance mutations. PLoS One 8(9): e73301. https://doi.org/10.1371/journal.pone.0073301

Zhang J, Li W, Chen J, Qi W, Wang F, Zhou Y. (2018). Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems. Chemosphere 203: 368-380.

Zhang L, Mah TF. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of Bacteriology 190(13): 4447-4452.

Downloads

Published

27-04-2023

How to Cite

Begum, J., & Mir, N. A. (2023). Molecular mechanisms of biofilm resistance against antibiotics : Biofilm antibiotic resistance. Letters In Animal Biology, 3(1), 17–27. https://doi.org/10.62310/liab.v3i1.107

Issue

Section

Review Articles
Recieved 2023-04-06
Accepted 2023-04-23
Published 2023-04-27

Most read articles by the same author(s)