Cytotoxicity and genotoxicity induced by metal-based nanoparticles in humans and animals

Nanoparticle toxicity

Authors

DOI:

https://doi.org/10.62310/liab.v4i2.143

Keywords:

Nanoparticles, Mechanism, Toxicity

Abstract

The growing interest in nanoparticles in modern research is due to their potential uses in different fields of study. Throughout human history, individuals have been exposed to environmental nanosized particles, and over the past century, these exposures have significantly risen. Through injection, ingestion, and inhalation, nanoparticles can change the material's physicochemical characteristics and improve its ability to absorb and interact with biological tissues. Nanoparticles can penetrate the cell membrane and reach up to mitochondria and nucleus, causing gene mutation and inhibiting the mitochondrial process involved in cell metabolism. The toxicity is associated with size, shape, charge, surface area, chemical composition, and other linked factors. The in vivo behavior of these nanoparticles is still a major question that needs to be resolved. The tests are performed against the new nanoparticles during the developmental process to eliminate or ameliorate identified toxic characteristics.

Metrics

Metrics Loading ...

References

Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. (2023). Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research 25: 43. https://doi.org/10.1007/s11051-023-05690-w

Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM, Elzoghby AO. (2018). Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites, and nanoaggregates. Journal of Controlled Release 269: 374-392.

Ahmed FM. (2024). Characterization of blend electrolytes containing organic and inorganic nanoparticles. Iraqi Journal of Applied Physics 20: 43-50.

Arick DQ, Choi YH, Kim HC, Won YY. (2015). Effects of nanoparticles on the mechanical functioning of the lung. Advances in Colloid and Interface Science 225: 218-228.

Arshad I, Kanwal A, Zafar I, Unar A, Unar A, Mouada H, Razia IT, Arif S, Ahsan M, Kamal MA, Rashid S, Khan KA, Sharma R. (2023). Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases. Environmental Research 242: 117795. https://doi.org/10.1016/j.envres.2023.117795

Augustyniak M, Ajay AK, Kędziorski A, Tarnawska M, Rost-Roszkowska M, Flasz B, Babczyńska A, Mazur B, Rozpędek K, Alian RS, Skowronek M, Świerczek E, Wiśniewska K, Ziętara P. (2024). Survival, growth, and digestive functions after exposure to nanodiamonds-Transgenerational effects beyond contact time in house cricket strains. Chemosphere 349:140809. https://doi.org/10.1016/j.chemosphere.2023.140809

Baabu PRS, Kumar HK, Gumpu MB, Babu KJ, Kulandaisamy AJ, Rayappan JBB. (2022). Iron Oxide Nanoparticles: A Review on the Province of Its Compounds, Properties and Biological Applications. Materials 16(1): 59. https://doi.org/10.3390/ma16010059

Badhe N, Shitole P, Chaudhari Y, Matkar S, Jamdhade P, Gharat T, Doke R. (2023). Nanoparticles in Cosmetics: The Safety and Hidden Risks. Biological Forum an International Journal 15: 1156-1161.

Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, Abdalla MS, Bechelany M. (2022). Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials 12(2):177. https://doi.org/10.3390/nano12020177

Barua S, Mitragotri S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano today 9(2): 223-243.

Bhardwaj LK, Rath P, Choudhury M. (2023). A comprehensive review on the classification, uses, sources of nanoparticles (NPs) and their toxicity on health. Aerosol Science and Engineering 7(1): 69-86.

Bhat MA, Gedik K, Gaga EO. (2023). Atmospheric micro (nano) plastics: future growing concerns for human health. Air Quality, Atmosphere & Health 16(2): 233-262.

Biswas S, Bagchi D, Ghosh D. (2022). The effects of (micro and Nano) plastics on the human body: nervous system, respiratory system, digestive system, placental barrier, skin, and excretory system. In: Joo SH, editor, Assessing the effects of emerging plastics on the environment and public health. Hershey, PA: IGI Global, USA. pp. 148-171. https://doi.org/10.4018/978-1-7998-9723-1.ch008

Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. (2020). Translocation of (ultra) fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Particle and Fibre Toxicology 17(56). https://doi.org/10.1186/s12989-020-00386-8

Borikar SP, Jain SP, Tapre DN, Mahapatra DK, Mahajan AV, Sonawane DS, Kendre PN. (2024). Neurotoxicity with the use of nanomaterials. In: Prajapati BG, Chellappan DK, Kendre PN, editors, Alzheimer's disease and advanced drug delivery strategies. Academic Press, Massachusetts, USA. pp. 421-438.

Chen C, Beloqui A, Xu Y. (2023). Oral nanomedicine bio-interactions in the gastrointestinal tract in health and disease. Advanced drug delivery reviews 203: 115117. https://doi.org/10.1016/j.addr.2023.115117

Corsi F, Deidda Tarquini G, Urbani M, Bejarano I, Traversa E, Ghibelli L. (2023). The impressive anti-inflammatory activity of Cerium oxide nanoparticles. Nanomaterials 13(20): 2803. https://doi.org/10.3390/nano13202803

de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. (2021). Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chemical Society Reviews 50(9): 5397-5434.

De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 29(12): 1912-1919

Debroy A, Joshi S, Yadav M, George, N. (2023). Green synthesis of nanoparticles from bio-waste for potential applications: Current trends, challenges, and prospects. Bio-Based Materials and Waste for Energy Generation and Resource Management. 431-466. https://doi.org/10.1016/b978-0-323-91149-8.00009-0

Devi L, Ansari TM, Alam MS, Kumar A, Kushwaha P. (2024). Metallic (inorganic) Nanoparticles: Classification, synthesis, mechanism, and scope. In: Alam, Javed MN, Ansari JR, editors, Metallic nanoparticles for health and the environment. CRC press, Boca Raton, USA. pp. 1-21.

Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO, Khan J, Onyeike EN, Uche CZ, Akram M, Ibrahim MS, El Mahdy NM, Awuchi CG, Saravanan K, Tijjani H, Odoh UE, Messaoudi M, Ifemeje JC, Olisah MC, Ezeofor NJ, Chikwendu CJ, Ibeabuchi CG. (2021). Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. Journal of Toxicology 2021: 9954443. https://doi.org/10.1155/2021/9954443

El-Houseiny W, Mansour MF, Mohamed WAM, Al-Gabri NA, El-Sayed AA, Altohamy DE, Ibrahim RE. (2021). Silver nanoparticles mitigate Aeromonas hydrophilia-induced immune suppression, oxidative stress, and apoptotic and genotoxic effects in Oreochromis niloticus. Aquaculture 535: 736430. https://doi.org/10.1016/j.aquaculture.2021.736430

Elsisi R, Helal DO, Mekhail G, Abou Hussein D, Osama A. (2023). Advancements in Skin Aging Treatment: Exploring Antioxidants and Nanoparticles for Enhanced Skin Permeation. Archives of Pharmaceutical Sciences Ain Shams University 7(2): 376-401.

Farjami A, Salatin S, Jafari S, Mahmoudian M, Jelvehgari M. (2021). The factors determining the skin penetration and cellular uptake of nanocarriers: New hope for clinical development. Current Pharmaceutical Design 27(42): 4315-4329.

Flores‐López LZ, Espinoza‐Gómez H, Somanathan R. (2019). Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. Journal of Applied Toxicology 39(1): 16-26.

Fujihara J, Nishimoto N. (2024). Review of zinc oxide nanoparticles: toxico-kinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction. Biological Trace Element Research 202(1): 9-23.

Gao X, Guo L, Li J, Thu HE, Hussain Z. (2018). Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: Critical appraisal of newer developments and challenges to clinical transition. Journal of Controlled Release 292: 29-57.

Gholizadeh Z, Aliannezhadi M, Ghominejad M, Tehrani FS. (2023). High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method. Scientific Reports 13(1): 6131.

Grissi C, Taverna Porro M, Perona M, Atia M, Negrin L, Moreno MS, Ibanez IL. (2023). Superparamagnetic iron oxide nanoparticles induce persistent large foci of DNA damage in human melanoma cells post-irradiation. Radiation and Environmental Biophysics 62(3): 357-369.

Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B. (2008). Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. Journal of Photochemistry and Photobiology 93(3): 119-126.

Gupta PK. (2023). Sources, classification, synthesis, and biomedical applications. In: PK Gupta, editor, Nanotoxicology in Nanobiomedicine. Springer Cham. pp. 23-36.

Harish V, Ansari MM, Tewari D, Yadav AB, Sharma N, Bawarig S, Barhoum A. (2023). Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. Journal of the Taiwan Institute of Chemical Engineers 149: 105010. https://doi.org/10.1016/j.jtice.2023.105010

He F, Shi H, Guo S, Li X, Tan X, Liu R. (2024). Molecular mechanisms of nano-sized polystyrene plastics induced cytotoxicity and immunotoxicity in Eisenia fetida. Journal of Hazardous Materials 465: 133032. https://doi.org/10.1016/j.jhazmat.2023.133032

He T, Long J, Li J, Liu L, Cao Y. (2017). Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). Environmental Toxicology and Pharmacology 56: 233-240.

Hosseini SA, Kardani A, Yaghoobi H. (2023). A comprehensive review of cancer therapies mediated by conjugated gold nanoparticles with nucleic acid. International Journal of Biological Macromolecules 253(5): 127184. https://doi.org/10.1016/j.ijbiomac.2023.127184

Hou J, Liu H, Zhang S, Liu X, Hayat T, Alsaedi A, Wang X. (2019). Mechanism of toxic effects of Nano-ZnO on cell cycle of zebrafish (Danio rerio). Chemosphere 229: 206-213.

Huang YW, Cambre M, Lee HJ. (2017). The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. International Journal of Molecular Sciences 18(12): 2702. https://doi.org/10.3390/ijms18122702

Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. (2023). Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Advanced Drug Delivery Reviews 202: 115111. https://doi.org/10.1016/j.addr.2023.115111

Jones MJ, Jones MC. (2024). Cell cycle control by cell-matrix interactions. Current Opinion in Cell Biology 86: 102288. https://doi.org/10.1016/j.ceb.2023.102288

Kanithi M, Kumari L, Yalakaturi K, Munjal K, Jimitreddy S, Kandamuri M, Junapudi S. (2024). Nanoparticle polymers influence on cardiac health: good or bad for cardiac physiology? Current Problems in Cardiology 49(1): 102145. https://doi.org/10.1016/j.cpcardiol.2023.102145

Kansara K, Patel P, Shah D, Shukla RK, Singh S, Kumar A, Dhawan A. (2015). TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environmental and Molecular Mutagenesis 56(2): 204-217.

Khan SU, Ullah M, Saeed S, Saleh EAM, Kassem AF, Arbi FM, Wahab A, Rehman M, Rehman K, Khan D, Zaman U, Khan KA, Khan MA, Lu K. (2024). Nanotherapeutic approaches for transdermal drug delivery systems and their biomedical applications. European Polymer Journal 207(9): 112819. https://doi.org/10.1016/j.eurpolymj.2024.112819

Khan S, Hossain MK. (2022). Classification and properties of nanoparticles. In: Nanoparticle-based polymer composites. Elsevier. pp. 15-54. https://doi/10.1016/B978-0-12-824272-8.00009-9

Kim KS, Na K, Bae YH. (2023). Nanoparticle oral absorption and its clinical translational potential. Journal of Controlled Release 360: 149-162.

Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. (2017). Form follows function: nanoparticle shape and its implications for nanomedicine. Chemical Reviews 117(17): 11476-11521.

Korniyenko VI, Khyzhnyak SV, Voitsitskiy, VM. (2024). Nanoparticles: Definition, toxicity, approaches to regulation, migration routes in the environment. Baltija Publishing. pp. 150-169. https://doi.org/10.30525/978-9934-26-395-8-8

Kthiri A, Hamimed S, Tahri W, Landoulsi A, O’Sullivan S, Sheehan D. (2023). Impact of silver ions and silver nanoparticles on biochemical parameters and antioxidant enzyme modulations in Saccharomyces cerevisiae under co-exposure to static magnetic field: a comparative investigation. International Microbiology 1-14. https://link.springer.com/journal/10123

Kumari S, Raturi S, Kulshrestha S, Chauhan K, Dhingra S, András K, Singh T. (2023). A comprehensive review on various techniques used for synthesizing nanoparticles. Journal of Materials Research and Technology 27: 1739-1763

Lee H, Horbath A, Kondiparthi L, Meena JK, Lei G, Dasgupta S, Gan B. (2024). Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance. Nature Communications 15(1): 1-13. https://doi.org/10.1038/s41467-023-44412-7

Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. (2002). Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. International Journal of Pharmaceutics 240(1-2): 95-102.

Liao Y, Brame J, Que W, Xiu Z, Xie H, Li Q, Alvarez PJ. (2013). Photocatalytic generation of multiple ROS types using low-temperature crystallized anodic TiO2 nanotube arrays. Journal of Hazardous Materials 260: 434-441.

Liu X, Xie X, Jiang J, Lin M, Zheng E, Qiu W, Meng H. (2021). Use of nano-formulation to target macrophages for disease treatment. Advanced Functional Materials 31(38): 2104487. https://doi.org/10.1002/adfm.202104487

Lizonova D, Nagarkar A, Demokritou P, Kelesidis GA. (2024). Effective density of inhaled environmental and engineered nanoparticles and its impact on the lung deposition and dosimetry. Particle and Fibre Toxicology 21(7). https://doi.org/10.1186/s12989-024-00567-9

Mahmoud SM, Barakat OS, Kotram LE. (2023). Stimulation the immune response through ξ potential on core–shell ‘calcium oxide/magnetite iron oxides’ nanoparticles. Animal Biotechnology 34(7): 2657-2673.

Medina-Ramirez IE, Jimenez-Chavez A, De Vizcaya-Ruiz A. (2023). Toxicity of nanoparticles. In: Guisbiers G, editor, Antimicrobial activity of nanoparticles. Elsevier. pp. 249-284. https://doi.org/10.1016/B978-0-12-821637-8.00006-7

Metwally RA, Abdelhameed RE. (2024). Co-application of arbuscular mycorrhizal fungi and nano-ZnFe2O4 improves primary metabolites, enzymes and NPK status of pea (Pisum sativum L.) plants. Journal of Plant Nutrition 47(3): 468-486.

Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. (2022). Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomaterials science10(12): 3029-3053.

Mir TUG, Katoch V, Angurana R, Wani AK, Shukla S, El Messaoudi N, Sher F, Mulla SI, Americo-Pinheiro JHP. (2022). Environmental and toxicological concerns associated with nanomaterials used in the industries. In: Castro GR, Nadda AK, Nguyen TA, Sharma S, Bilal M, editor, Nanomaterials for bioreactors and bioprocessing applications, Elsevier, 141-193. https://doi.org/10.1016/B978-0-323-91782-7.00010-2

Modena MM, Ruhle B, Burg TP, Wuttke S. (2019). Nanoparticle characterization: what to measure? Advanced Materials 31(32): 1901556. https://doi.org/10.1002/adma.201901556

Moschini, E. (2012). Nanoparticles: biological effects on in vitro and in vivo systems. Ph.D thesis, UNIVERSITY OF MILANO-BICOCCA, Milan, Italy.

Nafisi S, Maibach HI. (2018). Skin penetration of nanoparticles. In: Emerging Nanotechnologies in Immunology. Elsevier. pp. 47-88. https://doi.org/10.1016/B978-0-323-40016-9.00003-8

Nag S, Mitra O, Sankarganesh P, Bhattacharjee A, Mohanto S, Gowda BHJ, Kar S, Ramaiah S, Anbarasu A, Ahmed MG. (2024). Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review. Materials Today Chemistry 35: 101894. https://doi.org/10/106/j.mtchem.2023.101894

Nagesh MR, Vijayakumar N, Anandan R, Renuka M, Amalan V, Kavitha R, Arulmani SRB, Ahmed MZ, Alqahtani AS, Nasr FA, Alqahtani AM, Noman OM, Al-Mishari AA. (2023). Cytotoxic and genotoxic properties of silver nanoparticles synthesized by ethanolic extract of Salacia chinensis. International Journal of Biological Macromolecules 233:123506. https://doi.org/10.1016/j.ijbiomac.2023.123506

Nazari H, Barati Darband G, Arefinia R. (2023). A review on electroless Ni–P nanocomposite coatings: effect of hard, soft, and synergistic nanoparticles. Journal of Materials Science 58(10): 4292-4358.

Nugraha AS, Guselnikova O, Henzie J, Na J, Hossain MSA, Dag O, Rowan AE, Yamauchi Y. (2022). Symmetry-breaking plasmonic mesoporous gold nanoparticles with large pores. Chemistry of Materials 34(16): 7256-7270. https://doi.org/10.1021/acs.chemmater.2c01125

Odaudu OR, Akinsiku AA. (2022). Toxicity and Cytotoxicity Effects of Selected Nanoparticles: A Review. IOP Conference Series: Earth and Environmental Science 1054(1): 012007. https://doi.org/10.1088/1755-1315/1054/1/012007

Ogunsuyi OI. (2019). Cytogenetic and systemic toxicity induced by silver and copper oxide nanoparticles and their mixture in the somatic cells of three eukaryotic organisms. PhD thesis, University of Ibadan, Ibadan, Nigeria.

Panda KK, Golari D, Venugopal A, Achary VMM, Phaomei G, Parinandi NL, Sahu HK, Panda BB. (2017). Green synthesized zinc oxide (ZnO) nanoparticles induce oxidative stress and DNA damage in Lathyrus sativus L. root bioassay system. Antioxidants 6(2): 35. https://doi.org/10.3390/antiox6020035

Pasinszki T, Krebsz M. (2020). Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 10(5): 917. https://doi.org/10.3390/nano10050917

Rashid MM, Forte Tavcer P, Tomsic B. (2021). Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials 11(9): 2354. https://doi.org/10.3390/nano11092354

Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. (2022). Adverse outcome pathways associated with the ingestion of titanium dioxide nanoparticles — A systematic review. Nanomaterials 12(19): 3275. https://doi.org/10.3390/nano12193275

Sabir F, Ain QU, Rahdar A, Yang Z, Barani M, Bilal M, Bhalla N. (2022). Functionalized nanoparticles in drug delivery: Strategies to enhance direct nose-to-brain drug delivery via integrated nerve pathways. In: Thakur A, Thakur P, Paul Khurana SM, editors, Synthesis and applications of nanoparticles, Springer, Singapore. pp. 455-485. https://doi.org/10.1007/978-981-16-6819-7_21

Sahu D, Kannan GM, Tailang M, Vijayaraghavan R. (2015). In vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. Journal of Nanoscience 2016(1): 4023852. https://doi.org/10.1155/2016/4023852

Sangeetha VP, Arun V, Mohanan PV. (2023). Genotoxicity Evaluation of Nanosized Materials. In: Mohanan PV, Kappalli S, editors, Biomedical applications and toxicity of nanomaterials. Springer Nature, Singapore. pp. 477-534. https://doi.org/10.1007/978-981-19-7834-0_19

Si B, Wang X, Liu Y, Wang J, Zhou Y, Nie Y, Xu A. (2023). Multi-locus deletion mutation induced by silver nanoparticles: Role of lysosomal-autophagy dysfunction. Ecotoxicology and Environmental Safety 257: 114947. https://doi.org/10.1016/j.ecoenv.2023.114947

Singh V, Mohan C. (2023). Plant-derived compounds and their green synthesis in pharmaceuticals and nutraceuticals. In: Garg VK, Yadav A, Mohan C, Yadav S, Kumari N, editors, Green chemistry approaches to environmental sustainability, Elsevier. pp. 149-163.

Sonavane G, Tomoda K, Makino K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and Surfaces B: Biointerfaces 66(2): 274-280.

Sonwani S, Madaan S, Arora J, Suryanarayan S, Rangra D, Mongia N, Vats T, Saxena P. (2021). Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: a review. Frontiers in Sustainable Cities 3: 690444. https://doi.org/10.3389/frsc.2021.690444

Sutunkova MP, Klinova SV, Ryabova YV, Tazhigulova AV, Minigalieva IA, Shabardina LV, Solovyeva SN, Bushueva TV, Privalova LI. (2023). Comparative evaluation of the cytotoxic effects of metal oxide and metalloid oxide nanoparticles: An experimental study. International Journal of Molecular Sciences 24(9): 8383. https://doi.org/10.3390/ijms24098383

Tammam SN, Azzazy HM, Lamprecht A. (2015). Biodegradable particulate carrier formulation and tuning for targeted drug delivery. Journal of Biomedical Nanotechnology 11(4): 555-577.

Tang H, Xu M, Zhou X, Zhang Y, Zhao L, Ye G, Shi F, Lv C, Li, Y. (2018). Acute toxicity and biodistribution of different sized copper nano-particles in rats after oral administration. Materials Science and Engineering 93: 649-663.

Thai SF, Jones CP, Robinette BL, Nelson GB, Tennant A, Ren H, Vallanat B, Fisher AA, Ross J, Kitchin K. (2024). Effects of multi-walled carbon nanotubes on message and Micro-RNA in human lung BEAS-2B cells. Materials Express 14(2): 249-263.

Tomar D, Jawla S. (2024). Neurotoxic effects of nanoparticles and their pathogenesis. Pharmaceutical Nanotechnology 12(1): 32-44.

Valiulin SV, Onischuk AA, Pyryaeva AP, An’kov SV, Baklanov AM, Shkil NN, Nefedova EV, Ershov KS, Tolstikova, Dultseva, GG. (2023). Aerosol inhalation delivery of Ag nanoparticles in mice: Pharmacokinetics and antibacterial action. Antibiotics 12(10): 1534. https://doi.org/10.3390/antibiotics12101534

Wang X, Zhang J, Yin MA, Wang G, Han J, Dai M, Sun ZY. (2020). A comprehensive review of the properties of nanofluid fuel and its additive effects on compression ignition engines. Applied Surface Science 504: 144581. https://doi.org/10.1016/j.apsusc.2019.144581

Wu Y, Ma J, Sun Y, Tang M, Kong L. (2020). Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles. Chemosphere 255: 126913. https://doi.org/10.1016/j.chemosphere.2020.126913

Xia M, Chen X, Ma W, Guo Y, Yin R, Zhan J, Zhang Y, Wang Z, Zheng F, Xie J, Wang Y, Hua C, Liu Y, Yan C, Kulmala M. (2023). Observations and modeling of gaseous nitrated phenols in urban Beijing: Insights from seasonal comparison and budget analysis. Journal of Geophysical Research: Atmospheres 128(22): e2023JD039551. https://doi.org/10.1029/2023JD039551

Xu L, Liang HW, Yang Y, Yu SH. (2018). Stability and reactivity: positive and negative aspects for nanoparticle processing. Chemical Reviews 118(7): 3209-3250.

Xuan L, Ju Z, Skonieczna M, Zhou PK, Huang R. (2023). Nanoparticles‐induced potential toxicity on human health: applications, toxicity mechanisms, and evaluation models. MedComm 4(4): e327. https://doi.org/10.1002/mco2.327

Yanar F, Carugo D, Zhang X. (2023). Hybrid nanoplatforms comprising organic Nano compartments encapsulating inorganic nanoparticles for enhanced drug delivery and bioimaging applications. Molecules 28(15): 5694. https://doi.org/10.3390/molecules28155694

Yasin NA, El-Naggar ME, Ahmed ZSO, Galal MK, Rashad MM, Youssef AM, Elleithy EM. (2022). Exposure to Polystyrene nanoparticles induces liver damage in rats via induction of oxidative stress and hepatocyte apoptosis. Environmental Toxicology and Pharmacology 94:103911. https://doi.org/10.1016/j.etap.2022.103911

Yusuf M, Ridha S, Kamyab H. (2024). Recent progress in NP-Based Enhanced oil Recovery: Insights from molecular studies. Journal of Molecular Liquids 396: 124104. https://doi.org/10.1016/j.molliq.2024.124104

Zein R, Sharrouf W, Selting K. (2020). Physical properties of nanoparticles that result in improved cancer targeting. Journal of Oncology 2020(1): 5194780. https://doi.org/10.1155/2020/5194780

Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang, B. (2024). Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. Journal of Environmental Sciences 135: 449-473.

Zhang L, Wu L, Si Y, Shu K. (2018). Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PloS one 13(12): e0209020. https://doi.org/10.1371/journal.pone.0209020

Zhang M, Merlin D. (2018). Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflammatory Bowel Diseases 24(7): 1401-1415.

Zhang S, Gao H, Bao G. (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9): 8655-8671.

Zhou M, Xiao L, Jin J, Wang Y, Guo P, Luo J, Huang R. (2023). Role of p53/circRNA0085439/Ku70 axis in DNA damage response in lung cells exposed to ZnO nanoparticles: Involvement of epigenetic regulation. Cancer Nanotechnology 14(42). https://doi.org/10.1186/s12645-023-00192-9

Zia-Ur-Rehman M, Anayatullah S, Irfan E, Hussain SM., Rizwan M, Sohail MI, Jafir M, Ahmad T, Usman M, Alharby HF. (2023). Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review. Chemosphere 314: 137649. https://doi.org/10.1016/j.chemosphere.2022.137649

Zimmer AT, Baron PA, Biswas P. (2002). The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. Journal of Aerosol Science 33(3): 519-531.

Zoroddu MA, Medici S, Ledda A, Nurchi VM, Lachowicz JI, Peana M. (2014). Toxicity of nanoparticles. Current Medicinal Chemistry 21(33), 3837-3853.

Downloads

Published

19-07-2024

How to Cite

Rukh, L., Ullah, S., Naqvi, M. A. Q., Ahmad, I., Nawaz, M. Y., Shabir, A., Shafiq, M. S., Hafeez, F., Elahi, E., & Khan, A. M. A. (2024). Cytotoxicity and genotoxicity induced by metal-based nanoparticles in humans and animals: Nanoparticle toxicity. Letters In Animal Biology, 4(2), 01–10. https://doi.org/10.62310/liab.v4i2.143

Issue

Section

Review Articles
Recieved 2024-03-01
Accepted 2024-07-06
Published 2024-07-19

Most read articles by the same author(s)