Immunomodulation of nanoparticles: Unveiling immunosuppressive and anti- inflammatory properties

Nanoparticles and immunomodulation

Authors

  • Tayyaba Asghar University of Veterinary and Animal Sciences, Lahore, Pakistan
  • Yasir Nawaz University of Veterinary and Animal Sciences, Lahore, Pakistan https://orcid.org/0000-0001-5352-7883
  • Arslan Muhammad Ali Khan University of Agriculture, Faisalabad Pakistan https://orcid.org/0009-0001-8292-5810
  • Faisal Hafeez University of Agriculture, Faisalabad, Pakistan
  • Muhammad Shehroz Zafar University of Agriculture, Faisalabad, Pakistan https://orcid.org/0009-0000-9598-9103
  • Muhammad Tjammal Rehman University of Agriculture, Faisalabad, Pakistan https://orcid.org/0000-0002-0758-5019
  • Asif Ali University of Layyah, Layyah, Pakistan https://orcid.org/0009-0000-2046-7853
  • Dilawar Hussain University of Layyah, Layyah, Pakistan
  • Muhammad Ammar Azam PMAS Arid Agriculture University, Rawalpindi, Pakistan
  • Hasnain Idrees University of Agriculture, Faisalabad, Pakistan https://orcid.org/0009-0005-6254-4534
  • Muhammad Usama Qaid I azam University, Islamabad, Pakistan

DOI:

https://doi.org/10.62310/liab.v4i2.150

Keywords:

Immune response, Immunomodulation, Nanoparticles, Macrophages

Abstract

Interactions between nanoparticles and eukaryotic cells are nearly inevitable once they gain entry into the cell. Such accidental interactions between immune cells and nanoparticles may trigger a destructive chemical response and increase the risk for autoimmune diseases, tumors, and infections. Nanoparticles can also interface with biologic systems and elicit allergic or inflammatory responses, thereby activating the complement system. Nanoparticles have been known to stimulate the immune system either as haptens or adjuvants. The effects have also been known to be immunosuppressive. This review article summarizes some of the in vivo and in vitro studies carried out to show how nanoparticles stimulate or suppress the immune system in animals. Further research should, therefore, focus on the impact that the physical and chemical properties of nanoparticles have on their performance within the biological system to ensure safe usage of the particles. These qualities may interrupt the experimental process and have a greater influence on the interaction between nanoparticles and immune systems.

Metrics

Metrics Loading ...

References

Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. (2021). Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomaterialia 133: 58-73. https://doi.org/10.1016/j.actbio.2021.04.021

Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Saini J. (2023). Nanovaccines: a game-changing approach in the fight against infectious diseases. Biomedicine & Pharmacotherapy 167: 115597. https://doi.org/10.1016/j.biopha.2023.115597

Agarwal H, Nakara A, Shanmugam VK. (2019). Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomedicine & Pharmacotherapy 109: 2561-2572. https://doi.org/10.1016/j.biopha.2018.11.116

Ahmad N, Bhatnagar S, Ali SS, Dutta R. (2015). Phytofabrication of bioinduced silver nanoparticles for biomedical applications. International Journal of Nanomedicine 10: 7019-7030. http://dx.doi.org/10.2147/IJN.S94479

Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Varma RS. (2018). Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials 8(9): 634. https://doi.org/10.3390/nano8090634

Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca A, Mishra V, Mishra Y, Tambuwala MM. (2023). Nanomaterials and their impact on the immune system. International Journal of Molecular Sciences 24(3): 2008. https://doi.org/10.3390/ijms24032008

Alkinani TA, Bajgiran FA, Rezaei M, Maivan AM, Golrokh FJ, Bejarbaneh M, Salehzadeh A. (2024). Evaluation of the cytotoxic effect of Fe3O4 @ Glu-Gingerol on lung adenocarcinoma cell line (A549) with biological mechanisms. Heliyon 10(1): e23419. https://doi.org/10.1016/j.heliyon.2023.e23419

Andrade RG, Reis B, Costas B, Lima SAC, Reis S. (2020). Modulation of macrophages M1/M2 polarization using carbohydrate-functionalized polymeric nanoparticles. Polymers 13(1): 88. https://doi.org/10.3390/polym13010088

Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Alouffi A. (2022). Nanoparticles: Synthesis and their role as potential drug candidates for the treatment of parasitic diseases. Life 12(5): 750. https://doi.org/10.3390/life12050750

Basak U, Sarkar T, Sa G. (2023). Tumor-associated macrophages: an effective player of the tumor microenvironment. Frontiers in Immunology 14: 1295257. https://doi.org/10.3389/fimmu.2023.1295257

Baskaran X, Geo Vigila AV, Parimelazhagan T, Muralidhara-Rao D, Zhang S. (2016). Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. International Journal of Nanomedicine 11: 5789-5806. http://dx.doi.org/10.2147/IJN.S108208

Bonaventura A, Liberale L, Carbone F, Vecchie A, Diaz-Canestro C, Camici GG, Dallegri F. (2018). The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thrombosis and Haemostasis 118(01): 006-027. http://doi.org/10.1160/TH17-09-0630

Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, et al. (2020). Addressing nanomaterial immuno-safety by evaluating innate immunity across living species. Small 16(21): 2000598. https://doi.org/10.1002/smll.202000598

Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. (2023). Interaction between nanomaterials and the innate immune system across evolution. Biological Reviews 98(3): 747-774. https://doi.org/10.1111/brv.12928

Bou Zerdan M, Moussa S, Atoui A, Assi HI. (2021). Mechanisms of immunotoxicity: Stressors and evaluators. International Journal of Molecular Sciences 22(15): 8242. https://doi.org/10.3390/ijms22158242

Brand W, Peters RJ, Braakhuis HM, Maślankiewicz L, Oomen AG. (2020). Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen, and kidney after oral exposure. Nanotoxicology 14(7): 985-1007. https://doi.org/10.1080/17435390.2020.1778809

Breloer M, Linnemann L. (2024). Strongyloides ratti infection in mice: immune response and immune modulation. Philosophical Transactions of the Royal Society B 379(1894): 20220440. https://doi.org/10.1098/rstb.2022.0440

Cao M, Wang Z, Lan W, Xiang B, Liao W, Zhou J, Zhao Y. (2024). The roles of tissue-resident macrophages in health and cancer. Experimental Hematology & Oncology 13(1): 3. https://doi.org/10.1186/s40164-023-00469-0

Chakraborty S, Ye J, Wang H, Sun M. (2023). Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Frontiers in Immunology 14: 1227833. https://doi.org/10.3389/fimmu.2023.1227833

Chen Y, Cai J, Liu D, Liu S, Lei D, Zheng L, Gao M. (2022). Zinc-based metal organic framework with antibacterial and anti-inflammatory properties for promoting wound healing. Regenerative Biomaterials 9: rbac019. https://doi.org/10.1093/rb/rbac019

Chen Y, Guan M, Ren R, Gao C, Cheng H, Li Y, Xiong W. (2020). Improved immunoregulation of ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes via M2 macrophage polarization by regulating GLUT1 and autophagy. International Journal of Nanomedicine 15: 2011-2026. https://doi.org/10.2147/IJN.S242919

Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. (2023). Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. Molecular Biomedicine 4(1): 15. https://doi.org/10.1186/s43556-023-00125-3

Chew C, Brand OJ, Yamamura T, Lawless C, Morais MRPT, Zeef L, Lennon R. (2024). Kidney resident macrophages have distinct subsets and multifunctional roles. Matrix Biology. https://doi.org/10.1016/j.matbio.2024.02.002

Cutolo M, Campitiello R, Gotelli E, Soldano S. (2022). The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis. Frontiers in Immunology 13: 867260. https://doi.org/10.3389/fimmu.2022.867260

Daseke II MJ, Chalise U, Becirovic-Agic M, Salomon JD, Cook LM, Case AJ, Lindsey ML. (2021). Neutrophil signaling during myocardial infarction wound repair. Cellular Signalling 77: 109816. https://doi.org/10.1016/j.cellsig.2020.109816

David L, Moldovan B, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Florea A, Crisan M, Chiorean I, Clichici S. (2014). Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids and Surfaces B: Biointerfaces 122: 767-777. https://doi.org/10.1016/j.colsurfb.2014.08.018

de Brito Sousa K, Rodrigues MFSD, de Souza Santos D, Mesquita-Ferrari RA, Nunes FD, de Fátima Teixeira da Silva D, Fernandes KPS. (2020). Differential expression of inflammatory and anti-inflammatory mediators by M1 and M2 macrophages after photo-biomodulation with red or infrared lasers. Lasers in Medical Science 35: 337-343. https://doi.org/10.1007/s10103-019-02817-1

Deng R, Zhu Y, Wu X, Wang M. (2023). Toxicity and mechanisms of engineered nanoparticles in animals with established allergic asthma. International Journal of Nanomedicine 3489-3508. https://doi.org/10.2147/IJN.S411804

Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma M. (2023). Mast cell-mediated immune regulation in health and disease. Frontiers in Medicine 10: 1213320. https://doi.org/10.3389/fmed.2023.1213320

Dobrovolskaia MA. (2022). Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Frontiers in Immunology 13: 984252. https://doi.org/10.3389/fimmu.2022.984252

Dogra P, Butner JD, Chuang, YL, Caserta S, Goel S, Brinker CJ, Wang Z. (2019). Mathematical modeling in cancer nanomedicine: a review. Biomedical Microdevices 21: 40. https://doi.org/10.1007/s10544-019-0380-2

El-Rafie HM, Hamed MAA. (2014). Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Advances in Natural Sciences: Nanoscience and Nanotechnology 5(3): 035008. https://doi.org/10.1088/2043-6262/5/3/035008

Erjaee H, Nazifi S, Rajaian H. (2017). Effect of Ag‐NPs synthesized by Chamaemelum nobile extract on the inflammation and oxidative stress induced by carrageenan in mice paw. IET Nanobiotechnology11(6): 695-701. https://doi.org/10.1049/iet-nbt.2016.0245

Ferdous Z, Nemmar A. (2020). Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. International Journal of Molecular Sciences 21(7): 2375. https://doi.org/10.3390/ijms21072375

Gamucci O, Bertero A, Gagliardi M, Bardi G. (2014). Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4(1): 139-159. https://doi.org/10.3390/coatings4010139

Garcia AR, Finch C, Gatz M, Kraft T, Rodriguez DE, Cummings D Trumble BC. (2021). APOE4 is associated with elevated blood lipids and lower levels of innate immune biomarkers in a tropical Amerindian subsistence population. elife 10: e68231. https://doi.org/10.7554/eLife.68231

Garg A, Dewangan HK. (2020). Nanoparticles as adjuvants in vaccine delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems 37(2): 183-204. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020033273

Ghosh M, Hazarika P, Dhanya SJ, Pooja D, Kulhari H. (2023). Exploration of sialic acid receptors as a potential target for cancer treatment: A comprehensive review. International Journal of Biological Macromolecules 257: 128415. https://doi.org/10.1016/j.ijbiomac.2023.128415

Giridharan T, Masi C, Sindhu S, Arumugam P. (2014). Studies on green synthesis, characterization and anti-proliferative potential of silver nanoparticle using Dodonaea viscosa and Capparis decidua. Bioscience Biotechnology Research Asia 11(2): 665-673.

Govindappa M, Hemashekhar B, Arthikala MK, Rai VR, Ramachandra Y. (2018). Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results in Physics 9: 400-408. https://doi.org/10.1016/j.rinp.2018.02.049

Gowthaman U, Chen JS, Eisenbarth SC. (2020). Regulation of IgE by T follicular helper cells. Journal of Leukocyte Biology 107(3): 409-418. https://doi.org/10.1002/JLB.3RI1219-425R

Gupta S, Sarangi PP. (2023). Inflammation-driven metabolic regulation and adaptation in macrophages. Clinical Immunology 246: 109216. https://doi.org/10.1016/j.clim.2022.109216

Gusev E, Zhuravleva Y. (2022). Inflammation: A new look at an old problem. International Journal of Molecular Sciences 23(9): 4596. https://doi.org/10.3390/ijms23094596

Hamidzade M, Motlaghzadeh S, Khales P, Aminpanah D, Minaeian S, Hosseini-Hosseinabad SM, Tavakoli A. (2024). Metal and metal oxide nanoparticles as agents against human infectious viruses. Current Nanoscience 20(4): 510-529. https://doi.org/10.2174/1573413719666230608112014

Harvanová G, Duranková S, Bernasovská J. (2023). The role of cytokines and chemokines in the inflammatory response. Alergologia Polska-Polish Journal of Allergology 10(3): 210-219. https://doi.org/10.5114/pja.2023.131708

He R, Li L, Zhang T, Ding X, Xing Y, Zhu S, Hu, H. (2023). Recent advances of nanotechnology application in autoimmune diseases–A bibliometric analysis. Nano Today 48: 101694. https://doi.org/10.1016/j.nantod.2022.101694

Hemrajani C, Negi P, Parashar A, Gupta G, Jha NK, Singh SK, Dua K. (2022). Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: A nanotechnological perspective. Biomedicine & Pharmacotherapy 147: 112633. https://doi.org/10.1016/j.biopha.2022.112633

Heo GS, Kopecky B, Sultan D, Ou M, Feng G, Bajpai G, Lavine KJ. (2019). Molecular imaging visualizes the recruitment of inflammatory monocytes and macrophages to the injured heart. Circulation Research 124(6): 881-890. https://doi.org/10.1161/CIRCRESAHA.118.314030

Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. (2022). Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 14(6): e1804. https://doi.org/10.1002/wnan.1804

Horwitz DA, Bickerton S, La Cava A. (2021). Strategies to use nanoparticles to generate CD4 and CD8 regulatory T cells for the treatment of SLE and other autoimmune diseases. Frontiers in Immunology 12: 681062. https://doi.org/10.3389/fimmu.2021.681062

Ijaz I, Gilani E, Nazir A, Bukhari A. (2020). Detail review on chemical, physical, and green synthesis, classification, characterizations, and applications of nanoparticles. Green Chemistry Letters and Reviews 13(3): 223-245. https://doi.org/10.1080/17518253.2020.1802517

Islam NU, Amin R, Shahid M, Amin M, Zaib S, Iqbal J. (2017). A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, urease-inhibition, anti-inflammatory, and analgesic properties. BMC Complementary and Alternative Medicine 17: 1-17. https://doi.org/10.1186/s12906-017-1791-3

Ito C, Hikosaka-Kuniishi M, Yamazaki H, Yamane T. (2022). Multiple cell populations generate macrophage progenitors in the early yolk sac. Cellular and Molecular Life Sciences 79(3): 159. https://doi.org/10.1007/s00018-022-04203-7

Kaneko K, Miyaji EN, Gonçalves VM, Ferreira DM, Solórzano C, MacLoughlin R, Saleem I. (2021). Evaluation of polymer choice on immunogenicity of chitosan coated PLGA NPs with surface-adsorbed pneumococcal protein antigen PspA4Pro. International Journal of Pharmaceutics 599: 120407. https://doi.org/10.1016/j.ijpharm.2021.120407

Kausar M, Saleem Z, Azhar R, Rukhsar G, Ali M, Fan C, Khan AMA. (2023). Role of Nanoparticles in COVID-19 Management. In: Complementary and Alternative Medicine: One Health Perspective. FahumSci, Lahore, Pakistan. pp. 72-80. https://doi.org/10.61748/CAM.2023/010

Khan AMA., Wei CR, Fatima K, Ali A, Akram MS, Saeed Z, Ullah H. (2023). Use of Nanoparticles as Antioxidant Agents to Combat Bacterial Infections and its Benefits to Intestinal Microbiota and Immune Response. In: Complementary and Alternative Medicine: One Health Perspective. FahumSci, Lahore, Pakistan. pp. 81-87. https://doi.org/10.61748/CAM.2023/0011

Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, Khan MI. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts 12(11): 1386. https://doi.org/10.3390/catal12111386

Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, Sheibani M. (2023). Nano-immunotherapy: overcoming the delivery challenge of immune checkpoint therapy. Journal of Nanobiotechnology 21(1): 339. https://doi.org/10.1186/s12951-023-02083-y

Kiboneka A. (2021). Principals of innate and adaptive immunity. Immunity to microbes & fundamental concepts in immunology. World Journal of Advanced Research and Reviews 10(3): 188-197. https://doi.org/10.30574/wjarr.2021.10.3.0271

Krithika S, Niraimathi K, Arun K, Narendran R, Balaji K, Brindha P. (2016). In vitro, anti-inflammatory studies on silver nanoparticles synthesized from Centratherum punctatum Cass. International. Journal of Research in Ayurveda and Pharm 7(2): 61-66. https://doi.org/10.7897/2277-4343.07258

Kumaran N, Vijayaraj R, Swarnakala. (2017). Biosynthesis of silver nano particles from Leucas aspera (willd.) link and its anti-inflammatory potential against carrageen-induced paw edema in rats. International Journal of Pharmaceutical Sciences and Research 8(6): 2588-2593. http://doi.org/10.13040/IJPSR.0975-8232

Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Sheu WC. (2021). Biocompatibility of nanomaterials and their immunological properties. Biomedical Materials 16(4): 042005. http://doi.org/10.1088/1748-605X/abe5fa

Langelage M. (2024). The effects of acid aspiration on tissue-resident macrophages in extra-pulmonary organs. DM thesis, Justus Liebig University Giessen, Germany. http://dx.doi.org/10.22029/jlupub-18375

Li C, Tang, M. (2024). The toxicological effects of nano titanium dioxide on target organs and mechanisms of toxicity. Journal of Applied Toxicology 44(2): 152-164. https://doi.org/10.1002/jat.4534

Lin Y, Wang X, He S, Duan Z, Zhang Y, Sun X, Zhang Z. (2024). Immuno-stimulatory gene therapy combined with checkpoint blockade reshapes tumor microenvironment and enhances ovarian cancer immunotherapy. Acta Pharmaceutica Sinica B 14(2): 854-868. https://doi.org/10.1016/j.apsb.2023.08.014

Lin XL, Mohsin M, Abbas RZ, Li LN, Chen H, Huang CF, Li Y, Goraya MU, Huang Z, Yin GW. (2020). Evaluation of immunogenicity and protective efficacy of Eimeria maxima immune mapped protein 1 with EDA adjuvant in chicken. Pakistan Veterinary Journal 40(2): 209-213. http://dx.doi.org/10.29261/pakvetj/2020/043

Liu J, Liu Z, Pang Y, Zhou H. (2022). The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases. Journal of Nanobiotechnology 20(1): 1-25. https://doi.org/10.1186/s12951-022-01343-7

Liu X, Lu B, Fu J, Zhu X, Song E, Song Y. (2021). Amorphous silica nanoparticles induce inflammation via activation of NLRP3 inflammasome and HMGB1/TLR4/MYD88/NF-kb signaling pathway in HUVEC cells. Journal of Hazardous Materials 404: 124050. https://doi.org/10.1016/j.jhazmat.2020.124050

Logesh K, Raj B, Bhaskaran M, Thirumaleshwar S, Gangadharappa H, Osmani RA, Spandana KA. (2023). Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. Journal of Drug Delivery Science and Technology 104241. https://doi.org/10.1016/j.jddst.2023.104241

Madawi EA, Al Jayoush AR, Rawas-Qalaji M, Thu HE, Khan S, Sohail M, Hussain Z. (2023). Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases. Pharmaceutics 15(2): 657. https://doi.org/10.3390/pharmaceutics15020657

Mahmoud SM, Barakat OS, Kotram LE. (2023). Stimulation the immune response through ξ potential on core–shell ‘calcium oxide/magnetite iron oxides’ nanoparticles. Animal Biotechnology 34(7): 2657-2673. https://doi.org/10.1080/10495398.2022.2111310

Mani AK, Seethalakshmi S, Gopal V. (2015). Evaluation of the in-vitro anti-inflammatory activity of silver nanoparticles synthesised using Piper nigrum extract. Journal of Nanomedicine & Nanotechnology 6(2): 1. https://doi.org/10.4172/2157-7439.1000268

Mani KA, Vasanthi C, David DC. (2015). Enhanced anti-inflammatory activity of phyto-stabilized silver nanoparticles on carrageenan-induced paw edema in rats. International Journal of Pharma and Bio Sciences 6: 575-581.

Manikandan R, Manikandan B, Raman T, Arunagirinathan K, Prabhu NM, Basu MJ, Perumal M, Palanisamy S, Munusamy A. (2015). Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138: 120-129. https://doi.org/10.1016/j.saa.2014.10.043

Mariottoni P, Jiang SW, Prestwood CA, Jain V, Suwanpradid J, Whitley MJ, MacLeod AS. (2021). Single-cell RNA sequencing reveals cellular and transcriptional changes associated with M1 macrophage polarization in Hidradenitis suppurativa. Frontiers in Medicine 8: 665873. https://doi.org/10.3389/fmed.2021.665873

Martin KE, Garcia AJ. (2021). Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomaterialia 133: 4-16. https://doi.org/10.1016/j.actbio.2021.03.038

Mba IE, Nweze EI. (2020). The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World Journal of Microbiology and Biotechnology 36: 1-20. https://doi.org/10.1007/s11274-020-02940-0

Mir MA, Rashid M, Jan N. (2023). Cytokines and Chemokines in Tumor Growth and Progression. In: Mir MA, editor, Cytokine and Chemokine Networks in Cancer. Springer Singapore. pp. 33-77. https://doi.org/10.1007/978-981-99-4657-0_2

Mohammapdour R, Ghandehari H. (2022). Mechanisms of immune response to inorganic nanoparticles and their degradation products. Advanced Drug Delivery Reviews 180: 114022. https://doi.org/10.1016/j.addr.2021.114022

Mohanty S, Panda S, Purohit D, Si SC. (2019). A comprehensive review on PLGA-based nanoparticles used for rheumatoid arthritis. Research Journal of Pharmacy and Technology 12(3): 1481-1488. http://dx.doi.org/10.5958/0974-360X.2019.00245.2

Mohsin M, Aleem MT, Goraya MU, Aguilar-Marcelino L, Abbas RZ, Abbas A. (2024). Natural products and pseudo-natural products against veterinary disease-causing microorganisms. Frontiers in Veterinary Science 11: 1429587. https://doi.org/10.3389/fvets.2024.1429587

Moldovan B, David L, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Baldea I, Clichici S, Filip GA. (2017). In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Materials Science and Engineering 79: 720-727. https://doi.org/10.1016/j.msec.2017.05.122

Mozafari N. Jahanbekam S, Ashrafi H, Shahbazi MA, Azadi A. (2024). Recent biomaterial-assisted approaches for immunotherapeutic inhibition of cancer recurrence. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.3c01347

Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, Park H. (2020). Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomaterials Science 8(6): 1490-1501. https://doi.org/10.1039/C9BM01643K

Muniyappan N, Nagarajan N. (2014). Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochemistry 49(6): 1054-1061. https://doi.org/10.1016/j.procbio.2014.03.015

Murad U, Khan SA, Ibrar M, Ullah S, Khattak U. (2018). Synthesis of silver and gold nanoparticles from the leaf of Litchi chinensis and its biological activities. Asian Pacific Journal of Tropical Biomedicine 8(3): 142-149. https://doi.org/10.4103/2221-1691.227995

Nene A, Galluzzi M, Hongrong L, Somani P, Ramakrishna S, Yu XF. (2021). Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. Nanoscale 13(33): 13923-13942. https://doi.org/10.1039/D1NR01851E

Ninan N, Goswami N, Vasilev K. (2020). The impact of engineered silver nanomaterials on the immune system. Nanomaterials 10(5): 967. https://doi.org/10.3390/nano10050967

Park EJ, Choi DH, Kim Y, Lee EW, Song J, Cho MH, Kim SW. (2014). Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264. 7 cells. Toxicology in Vitro 28(8): 1402-1412. https://doi.org/10.1016/j.tiv.2014.07.010

Paroha S, Jain V, Rani L, Neha SL, Pannu A, Kumar B, Sahoo PK. (2023). Nanoparticles for targeted drug delivery systems with cancer therapy in perspective. In: Rajput VS, Runthala, editors, Drugs and a methodological compendium: From bench to bedside. Springer Singapore. pp. 313-334. https://doi.org/10.1007/978-981-19-7952-1_11

Passeri L, Marta F, Bassi V, Gregori S. (2021). Tolerogenic dendritic cell-based approaches in autoimmunity. International Journal of Molecular Sciences 22(16): 8415. https://doi.org/10.3390/ijms22168415

Polo E, Collado M, Pelaz B, Del Pino P. (2017). Advances toward more efficient targeted delivery of nanoparticles in vivo: understanding interactions between nanoparticles and cells. ACS nano 11(3): 2397-2402. https://doi.org/10.1021/acsnano.7b01197

Pondman K, Le Gac S, Kishore U. (2023). Nanoparticle-induced immune response: Health risk versus treatment opportunity? Immunobiology 228(2): 152317. https://doi.org/10.1016/j.imbio.2022.152317

Poudel S, Gupta S, Saigal S. (2024). Basics and art of Immunosuppression in Liver Transplantation. Journal of Clinical and Experimental Hepatology 14(3): 101345. https://doi.org/10.1016/j.jceh.2024.101345

Raffie AR, Aslam A, Tipu MY, Altaf I, Mustafa A, Imran MS, Farooq MZ, Abbas G, Goswami N, Mohsin M, Khan AA, Aslam S, Abdul K. (2023). A comparative study of the effect of non-antibiotic feed additives on experimental colonization of Salmonella Enterica Serovar Enteritidis and intestinal pathomorphology in Broiler Chickens. Brazilian Journal of Poultry Science 25(3): eRBCA-2022. https://doi.org/10.1590/1806-9061-2022-1620

Raha S, Ahmaruzzaman M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances 4(8): 1868-1925. https://doi.org/10.1039/D1NA00880C

Ramakoti IS, Panda AK, Gouda N. (2023). A brief review on polymer nanocomposites: current trends and prospects. Journal of Polymer Engineering 43(8): 651-679. https://doi.org/10.1515/polyeng-2023-0103

Ribeiro R, Teixeira A, Lopes T, Cruz C. (2024). A case of acute eosinophilic pneumonia associated with non-steroidal anti-inflammatory drugs. Cureus 16(1): e52159. https://doi.org/10.7759/cureus.52159

Rosales C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. Journal of Leucocyte Biology 108(1): 377-396. https://doi.org/10.1002/JLB.4MIR0220-574RR

Saafane A, Girard D. (2022). Interaction between iron oxide nanoparticles (Fe3O4 NPs) and human neutrophils: Evidence that Fe3O4 NPs possess some pro-inflammatory activities. Chemico-Biological Interactions 365: 110053. https://doi.org/10.1016/j.cbi.2022.110053

Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Wu P. (2023). Recent updates on multifunctional nanomaterials as antipathogens in humans and livestock: Classification, application, mode of action, and challenges. Molecules 28(22): 7674. https://doi.org/10.3390/molecules28227674

Sanchez C, Gustavo A. (2021). Molecular manipulation and new antimicrobial identification in Acanthamoeba spp. Ph.D thesis, University of Strathclyde, Glasgow, Scotland. https://doi.org/10.48730/j6bt-9m18

Shah MZ, Guan ZH, Din AU, Ali A, Rehman AU, Jan K, Fahad S. (2021). Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities. Scientific Reports 11(1): 20754. https://doi.org/10.1038/s41598-021-00296-5

Shanley LC, Mahon OR, Kelly DJ, Dunne A. (2021). Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomaterialia 133: 208-221. https://doi.org/10.1016/j.actbio.2021.02.023

Sharma P, Kumar P, Sharma R. (2017). The major histocompatibility complex: a review. Asian Journal of Pharmaceutical and Clinical Research 10(2): 33-36. http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15555

Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR. (2012). Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. International Journal of Nanomedicine 7: 2729-2737. https://doi.org/10.2147/IJN.S31054

Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, Samanta SK. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports 25: e00427. https://doi.org/10.1016/j.btre.2020.e00427

Singh P, Ahn S, Kang JP, Veronika S, Huo Y, Singh H, Chokkaligam M, El-Agamy Farh M, Aceituno VC, Kim YJ. (2018). In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artificial Cells, Nanomedicine, and Biotechnology 46(8): 2022-2032. https://doi.org/10.1080/21691401.2017.1408117

Sinibaldi S. (2024). Anti-inflammatory drugs: Glucocorticoids. In: In: Esquinas AM, Mina B, Spadaro S, Perrotta D, De Sanctis F, editors, Pharmacology in noninvasive ventilation. Springer Cham, International Publishing House. pp. 265-275. https://doi.org/10.1007/978-3-031-44626-9_28

Soleiman-Meigooni S, Kheirkhah AH, Yarahmadi A, Afkhami H. (2024). Recent advances in different interactions between toll-like receptors and hepatitis B infection: A review. Frontiers in Immunology 15: 1363996. https://doi.org/10.3389/fimmu.2024.1363996

Soni SS, Kim KM, Sarkar B, Rodell CB. (2024). Uptake of cyclodextrin nanoparticles by macrophages is dependent on particle size and receptor-mediated interactions. ACS Applied Bio Materials 7(8): 4856-4866. https://doi.org/10.1021/acsabm.3c00985

Sonsupap C, Pokhakul P, Kariya T, Suzuki Y, Hamajima N, Yamamoto E. (2023). Characteristics of adverse drug reactions due to nonsteroidal anti-inflammatory drugs: a cross-sectional study. Nagoya Journal of Medical Science 85(4): 668. https://doi.org/10.18999/nagjms.85.4.668

Sriharikrishnaa S, Suresh PS, Prasada KS. (2023). An introduction to fundamentals of cancer biology. In: Mazumder N, Kistenev YV, Borisova E, Prasada KS, editors, Optical polarimetric modalities for biomedical research. Springer Cham, International Publishing. pp. 307-330. https://doi.org/10.1007/978-3-031-31852-8_11

Stater EP, Sonay AY, Hart C, Grimm J. (2021). The ancillary effects of nanoparticles and their implications for nanomedicine. Nature Nanotechnology 16(11): 1180-1194. https://doi.org/10.1038/s41565-021-01017-9

Stojkov D, Gigon L, Peng S, Lukowski R, Ruth P, Karaulov A, Rizvanov A, Barlev NA, Yousefi S, Simon U. (2022). Physiological and pathophysiological roles of metabolic pathways for NET formation and other neutrophil functions. Frontiers in Immunology 13: 826515. https://doi.org/10.3389/fimmu.2022.826515

Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK, Striz I. (2023). M1/M2 macrophages and their overlaps–myth or reality? Clinical Science 137(15): 1067-1093. https://doi.org/10.1042/CS20220531

Sun J, Daniels RR, Balic A, Andresen AM, Bjørgen H, Dobie R, Macqueen DJ. (2024). Cell atlas of the Atlantic salmon spleen reveal immune cell heterogeneity and cell-specific responses to bacterial infection. Fish & Shellfish Immunology 145: 109358. https://doi.org/10.1016/j.fsi.2024.109358

Sun R, Jiang H. (2024). Border-associated macrophages in the central nervous system. Journal of Neuroinflammation 21: 67. https://doi.org/10.1186/s12974-024-03059-x

Sung PS, Jang JW. (2018). Natural killer cell dysfunction in hepatocellular carcinoma: Pathogenesis and clinical implications. International Journal of Molecular Sciences 19(11): 3648. https://doi.org/10.3390/ijms19113648

Togashi Y, Shitara K, Nishikawa H. (2019). Regulatory T cells in cancer immunosuppression – implications for anticancer therapy. Nature Reviews Clinical Oncology 16(6): 356-371. https://doi.org/10.1038/s41571-019-0175-7

Tomlin H, Piccinini AM. (2018). A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 155(2): 186-201. https://doi.org/10.1111/imm.12972

Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Sethi G. (2023). Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. Journal of Nanostructure in Chemistry 13(3): 321-348. https://doi.org/10.1007/s40097-022-00504-2

Tulinska J, Masanova V, Liskova A, Mikusova ML, Rollerova E, Krivosikova Z, Docekal B, et al. (2020). Six-week inhalation of CdO nanoparticles in mice: The effects on immune response, oxidative stress, antioxidative defense, fibrotic response, and bones. Food and Chemical Toxicology 136: 110954. https://doi.org/10.1016/j.fct.2019.110954

Tulinska J, Mikusova ML, Liskova A, Busova M, Masanova V, Uhnakova I, Mikuska P. (2022). Copper oxide nanoparticles stimulate the immune response and decrease antioxidant defense in mice after six-week inhalation. Frontiers in Immunology 13: 874253. https://doi.org/10.3389/fimmu.2022.874253

Vanharen M, Mahbeer T, Leveille A, Methot A, Samountry P, Girard D. (2023). Impact of gold nanoparticles (Au NPs) in human neutrophils in vitro and in leukocytes attraction in vivo: A sex-based analysis. Environmental Toxicology and Pharmacology 104:104319. https://doi.org/10.1016/j.etap.2023.104319

Varghese RE, Ragavan D, Sivaraj S, Gayathri D, Kannayiram G. (2017). Anti-inflammatory activity of Syzygium aromatocum silver nanoparticles: In vitro and in vivo sillico study. Asian Journal of Pharmaceutical and Clinical Research 10(11): 370-373.

Vijayaraj R, Vidhya R. (2016). Biological activity of Achyranthes aspera Linn. – A review. Asian Journal of Biochemical Pharmaceutical Research 6(1): 86-93

Wang C, Dong Z, Hao Y, Zhu Y, Ni J, Li Q, Feng, L. (2022). Coordination polymer‐coated CaCO3 reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Advanced Materials 34(3): 2106520. https://doi.org/10.1002/adma.202106520

Wang F, Ullah A, Fan X, Xu Z, Zong R, Wang X, Chen G. (2021). Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation. Journal of Controlled Release 333: 107-128. https://doi.org/10.1016/j.jconrel.2021.03.027

Wang J, Dong D, Zhao W, Wang J. (2024). Intravital microscopy visualizes innate immune crosstalk and function in tissue microenvironment. European Journal of Immunology 54(1): 2350458. https://doi.org/10.1002/eji.202350458

Wroblewska A, Szczygieł A, Szermer-Olearnik B, Pajtasz-Piasecka E. (2023). Macrophages as Promising Carriers for Nanoparticle Delivery in Anticancer Therapy. International Journal of Nanomedicine 4521-4539. https://doi.org/10.2147/IJN.S421173

Wu MY, Lu J. H. (2019). Autophagy and macrophage functions: inflammatory response and phagocytosis. Cells 9(1): 70. https://doi.org/10.3390/cells9010070

Xuan L, Ju Z, Skonieczna M, Zhou P‐K, Huang R. (2023). Nanoparticles‐induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 4: e327. https://doi.org/10.1002/mco2.327

Yousaf H, Khan MIU, Ali I, Munir MU, Lee KY. (2023). Emerging role of macrophages in non-infectious diseases: An update. Biomedicine & Pharmacotherapy 161: 114426. https://doi.org/10.1016/j.biopha.2023.114426

Zhang N, Bevan MJ. (2012). TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nature Immunology 13(7): 667-673. https://doi.org/10.1038/ni.2319

Zhao R, Xiang J, Wang B, Chen L, Tan S. (2022). Recent advances in the development of noble metal NPs for cancer therapy. Bioinorganic Chemistry and Applications 2022(1): 2444516. https://doi.org/10.1155/2022/2444516

Zhao S, Zhang J, Qiu M, Hou Y, Li X, Zhong G, Wang, X. (2024). Mucoadhesive and thermosensitive Bletilla striata polysaccharide/chitosan hydrogel loaded nanoparticles for rectal drug delivery in ulcerative colitis. International Journal of Biological Macromolecules 254: 127761. https://doi.org/10.1016/j.ijbiomac.2023.127761

Zheng Q, Chen C, Liu Y, Gao J, Li L, Yin C, Yuan X. (2024). Metal Nanoparticles: Advanced and Promising Technology in Diabetic Wound Therapy. International Journal of Nanomedicine 2024: 965-992. https://doi.org/10.2147/IJN.S434693

Zhu X, Shi Z, Mao Y, Lächelt U, Huang, R. (2024). Cell membrane perforation: patterns, mechanisms, and functions. Small 20(24): 2310605. https://doi.org/10.1002/smll.202310605

Downloads

Published

13-09-2024

How to Cite

Asghar, T., Nawaz, Y., Khan, A. M. A., Hafeez, F., Zafar, M. S., Rehman, M. T., Ali, A., Hussain, D., Azam, M. A., Idrees, H., & Usama, M. (2024). Immunomodulation of nanoparticles: Unveiling immunosuppressive and anti- inflammatory properties: Nanoparticles and immunomodulation. Letters In Animal Biology, 4(2), 28–39. https://doi.org/10.62310/liab.v4i2.150

Issue

Section

Review Articles
Recieved 2024-07-26
Accepted 2024-09-07
Published 2024-09-13

Most read articles by the same author(s)